-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
444 lines (374 loc) · 21.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import argparse
import logging
import math
import os
import random
from itertools import chain
import datasets
import torch
import numpy as np
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
default_data_collator,
)
from transformers.utils.versions import require_version
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune large language models on causal language modeling tasks")
parser.add_argument("--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).")
parser.add_argument("--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).")
parser.add_argument("--train_file", type=str, default=None, help="A csv or a json file containing the training data.")
parser.add_argument("--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False)
parser.add_argument("--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).")
parser.add_argument("--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--learning_rate", type=float, default=0.0001, help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
parser.add_argument("--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES)
parser.add_argument("--block_size", type=int, default=None, help="The training dataset will be truncated to blocks of this size (after tokenization) for training.")
parser.add_argument("--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.")
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets")
parser.add_argument("--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files.")
parser.add_argument("--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.")
parser.add_argument("--save_prefix", type=str, default='', help="Informative string prefix for saving purposes.")
parser.add_argument("--use_pretrained_weights", type=bool, default=True, help="Whether to use pretrained weights.")
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_file is None:
raise ValueError("Need either a dataset name or a training file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
return args
def main():
args = parse_args()
# Initialize the accelerator
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {"train": args.train_file}
dataset_args = {}
extension = args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer, model_max_length=2048) # TODO: pass this more beautifully
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer, model_max_length=2048) # TODO: pass this more beautifully
if args.model_name_or_path.startswith("gpt2") or args.model_name_or_path.startswith("EleutherAI"):
tokenizer.pad_token = tokenizer.eos_token
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path and args.use_pretrained_weights:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config)
else:
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets. First we tokenize all the texts.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length})."
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
block_size = args.block_size
if args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = tokenizer.model_max_length
print('Block size:', block_size)
# TODO: revert this back later on
def tokenize_function(examples):
return tokenizer(examples[text_column_name], padding='max_length', truncation=True, max_length=block_size)
def tokenize_function_original(examples):
return tokenizer(examples[text_column_name])
with accelerator.main_process_first():
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
# TODO: Might have to change this to group_text as in the original example
# TODO: revert this back later on
# Main data processing function.
def preprocess_function(examples):
examples["labels"] = examples["input_ids"].copy()
# pad token must be set to -100 in labels to make sure it's ignored when computing the loss
examples["labels"] = [[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in examples["labels"]]
return examples
def preprocess_function_original(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
with accelerator.main_process_first():
lm_datasets = tokenized_datasets.map(
preprocess_function,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Not grouping text.",
)
# dataset & dataloader creation
train_dataset = lm_datasets["train"]
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size)
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
logger.info(f"Sample {index} of the training set (decoded): {tokenizer.decode(train_dataset[index]['input_ids'], skip_special_tokens=True)}.")
model = accelerator.prepare(model)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# Prepare everything with our `accelerator`.
optimizer, train_dataloader = accelerator.prepare(optimizer, train_dataloader)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(starting_epoch * num_update_steps_per_epoch)
completed_steps = starting_epoch * num_update_steps_per_epoch
train_losses = []
train_losses_all = []
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
completed_steps += 1
continue
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# keep track of the loss at each epoch
train_losses.append(loss.detach().unsqueeze(0))
train_losses_all.append(loss.detach().unsqueeze(0))
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
# save model and tokenizer
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(output_dir)
# save train_losses
train_losses_ckpt = torch.cat(train_losses)
train_losses_ckpt = train_losses_ckpt.cpu().numpy()
train_losses_all_ckpt = torch.cat(train_losses_all)
train_losses_all_ckpt = train_losses_all_ckpt.cpu().numpy()
logger.info(f"Mean train loss: {np.mean(train_losses_ckpt)}")
save_path = os.path.join(output_dir, 'train_losses.npz')
np.savez(save_path, train_losses=train_losses_all_ckpt, completed_steps=completed_steps)
# re-initialize losses
train_losses = []
if completed_steps >= args.max_train_steps:
break
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
# save train_losses
train_losses_ckpt = torch.cat(train_losses)
train_losses_ckpt = train_losses_ckpt.cpu().numpy()
logger.info(f"Mean train loss: {np.mean(train_losses_ckpt)}")
save_path = os.path.join(output_dir, args.save_prefix + '_results.npz')
np.savez(save_path, train_losses_ckpt=train_losses_ckpt, completed_steps=completed_steps)
if args.checkpointing_steps is None and args.output_dir is not None:
# save model and tokenizer
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
# save train_losses
train_losses_ckpt = torch.cat(train_losses)
train_losses_ckpt = train_losses_ckpt.cpu().numpy()
logger.info(f"Final mean train loss: {np.mean(train_losses_ckpt)}")
# save results
save_path = os.path.join(args.output_dir, args.save_prefix + '_results.npz')
np.savez(save_path, train_losses_ckpt=train_losses_ckpt, completed_steps=completed_steps)
if __name__ == "__main__":
main()