-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathconv_moe_demo.py
141 lines (125 loc) · 5.62 KB
/
conv_moe_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
'''Comparing a simple CNN with a convolutional MoE model on the CIFAR10 dataset. Based on the cifar10_cnn.py file in the
keras/examples folder.
'''
import numpy as np
import tensorflow as tf
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation, Flatten, MaxPooling2D, Conv2D
from keras.models import Model
from keras import backend as K
from ConvolutionalMoE import Conv2DMoE
from DenseMoE import DenseMoE
from scipy.io import savemat
import os
batch_size = 32
num_classes = 10
epochs = 16
data_augmentation = True
num_predictions = 20
which_model = 'cnn' # 'moe' or 'cnn'
job_idx = 3
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
if which_model == 'moe':
# MoE model
num_experts_per_filter = 2
model = Sequential()
model.add(Conv2DMoE(32, num_experts_per_filter, (3, 3), expert_activation='relu', gating_activation='softmax', padding='same', input_shape=x_train.shape[1:]))
model.add(Conv2DMoE(32, num_experts_per_filter, (3, 3), expert_activation='relu', gating_activation='softmax'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2DMoE(64, num_experts_per_filter, (3, 3), expert_activation='relu', gating_activation='softmax', padding='same'))
model.add(Conv2DMoE(64, num_experts_per_filter, (3, 3), expert_activation='relu', gating_activation='softmax'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(DenseMoE(512, num_experts_per_filter, expert_activation='relu', gating_activation='softmax'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
elif which_model == 'cnn':
# plain Conv model
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
hist = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
fill_mode='nearest', # set mode for filling points outside the input boundaries
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
rescale=None, # set rescaling factor (applied before any other transformation)
preprocessing_function=None, # set function that will be applied on each input
data_format=None # image data format, either "channels_first" or "channels_last"
)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
hist = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
epochs=epochs,
steps_per_epoch=len(x_train) / batch_size,
validation_data=(x_test, y_test),
workers=4)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
# Save results
savemat('%s_jobidx_%i.mat' % (which_model, job_idx), {'history': hist.history})