forked from supranational/blst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathec_ops.h
787 lines (768 loc) · 33.2 KB
/
ec_ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
* Copyright Supranational LLC
* Licensed under the Apache License, Version 2.0, see LICENSE for details.
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __BLS12_384_ASM_EC_OPS_H__
#define __BLS12_384_ASM_EC_OPS_H__
/*
* Addition that can handle doubling [as well as points at infinity,
* which are encoded as Z==0] in constant time. It naturally comes at
* cost, but this subroutine should be called only when independent
* points are processed, which is considered reasonable compromise.
* For example, ptype##s_mult_w5 calls it, but since *major* gain is
* result of pure doublings being effectively divided by amount of
* points, slightly slower addition can be tolerated. But what is the
* additional cost more specifically? Best addition result is 11M+5S,
* while this routine takes 13M+5S (+1M+1S if a4!=0), as per
*
* -------------+-------------
* addition | doubling
* -------------+-------------
* U1 = X1*Z2^2 | U1 = X1
* U2 = X2*Z1^2 |
* S1 = Y1*Z2^3 | S1 = Y1
* S2 = Y2*Z1^3 |
* zz = Z1*Z2 | zz = Z1
* H = U2-U1 | H' = 2*Y1
* R = S2-S1 | R' = 3*X1^2[+a*Z1^4]
* sx = U1+U2 | sx = X1+X1
* -------------+-------------
* H!=0 || R!=0 | H==0 && R==0
*
* X3 = R^2-H^2*sx
* Y3 = R*(H^2*U1-X3)-H^3*S1
* Z3 = H*zz
*
* As for R!=0 condition in context of H==0, a.k.a. P-P. The result is
* infinity by virtue of Z3 = (U2-U1)*zz = H*zz = 0*zz == 0.
*/
#define POINT_DADD_IMPL(ptype, bits, field) \
static void ptype##_dadd(ptype *out, const ptype *p1, const ptype *p2, \
const vec##bits a4) \
{ \
ptype p3; /* starts as (U1, S1, zz) from addition side */\
struct { vec##bits H, R, sx; } add, dbl; \
bool_t p1inf, p2inf, is_dbl; \
\
add_##field(dbl.sx, p1->X, p1->X); /* sx = X1+X1 */\
sqr_##field(dbl.R, p1->X); /* X1^2 */\
mul_by_3_##field(dbl.R, dbl.R); /* R = 3*X1^2 */\
add_##field(dbl.H, p1->Y, p1->Y); /* H = 2*Y1 */\
\
p2inf = vec_is_zero(p2->Z, sizeof(p2->Z)); \
sqr_##field(p3.X, p2->Z); /* Z2^2 */\
mul_##field(p3.Z, p1->Z, p2->Z); /* Z1*Z2 */\
p1inf = vec_is_zero(p1->Z, sizeof(p1->Z)); \
sqr_##field(add.H, p1->Z); /* Z1^2 */\
\
if (a4 != NULL) { \
sqr_##field(p3.Y, add.H); /* Z1^4, [borrow p3.Y] */\
mul_##field(p3.Y, p3.Y, a4); \
add_##field(dbl.R, dbl.R, p3.Y);/* R = 3*X1^2+a*Z1^4 */\
} \
\
mul_##field(p3.Y, p1->Y, p2->Z); \
mul_##field(p3.Y, p3.Y, p3.X); /* S1 = Y1*Z2^3 */\
mul_##field(add.R, p2->Y, p1->Z); \
mul_##field(add.R, add.R, add.H); /* S2 = Y2*Z1^3 */\
sub_##field(add.R, add.R, p3.Y); /* R = S2-S1 */\
\
mul_##field(p3.X, p3.X, p1->X); /* U1 = X1*Z2^2 */\
mul_##field(add.H, add.H, p2->X); /* U2 = X2*Z1^2 */\
\
add_##field(add.sx, add.H, p3.X); /* sx = U1+U2 */\
sub_##field(add.H, add.H, p3.X); /* H = U2-U1 */\
\
/* make the choice between addition and doubling */\
is_dbl = vec_is_zero(add.H, 2*sizeof(add.H)); \
vec_select(&p3, p1, &p3, sizeof(p3), is_dbl); \
vec_select(&add, &dbl, &add, sizeof(add), is_dbl); \
/* |p3| and |add| hold all inputs now, |p3| will hold output */\
\
mul_##field(p3.Z, p3.Z, add.H); /* Z3 = H*Z1*Z2 */\
\
sqr_##field(dbl.H, add.H); /* H^2 */\
mul_##field(dbl.R, dbl.H, add.H); /* H^3 */\
mul_##field(dbl.R, dbl.R, p3.Y); /* H^3*S1 */\
mul_##field(p3.Y, dbl.H, p3.X); /* H^2*U1 */\
\
mul_##field(dbl.H, dbl.H, add.sx); /* H^2*sx */\
sqr_##field(p3.X, add.R); /* R^2 */\
sub_##field(p3.X, p3.X, dbl.H); /* X3 = R^2-H^2*sx */\
\
sub_##field(p3.Y, p3.Y, p3.X); /* H^2*U1-X3 */\
mul_##field(p3.Y, p3.Y, add.R); /* R*(H^2*U1-X3) */\
sub_##field(p3.Y, p3.Y, dbl.R); /* Y3 = R*(H^2*U1-X3)-H^3*S1 */\
\
vec_select(&p3, p1, &p3, sizeof(ptype), p2inf); \
vec_select(out, p2, &p3, sizeof(ptype), p1inf); \
}
/*
* Addition with affine point that can handle doubling [as well as
* points at infinity, with |p1| being encoded as Z==0 and |p2| as
* X,Y==0] in constant time. But at what additional cost? Best
* addition result is 7M+4S, while this routine takes 8M+5S, as per
*
* -------------+-------------
* addition | doubling
* -------------+-------------
* U1 = X1 | U1 = X2
* U2 = X2*Z1^2 |
* S1 = Y1 | S1 = Y2
* S2 = Y2*Z1^3 |
* H = U2-X1 | H' = 2*Y2
* R = S2-Y1 | R' = 3*X2^2[+a]
* sx = X1+U2 | sx = X2+X2
* zz = H*Z1 | zz = H'
* -------------+-------------
* H!=0 || R!=0 | H==0 && R==0
*
* X3 = R^2-H^2*sx
* Y3 = R*(H^2*U1-X3)-H^3*S1
* Z3 = zz
*
* As for R!=0 condition in context of H==0, a.k.a. P-P. The result is
* infinity by virtue of Z3 = (U2-U1)*zz = H*zz = 0*zz == 0.
*/
#define POINT_DADD_AFFINE_IMPL_A0(ptype, bits, field, one) \
static void ptype##_dadd_affine(ptype *out, const ptype *p1, \
const ptype##_affine *p2) \
{ \
ptype p3; /* starts as (,, H*Z1) from addition side */\
struct { vec##bits H, R, sx; } add, dbl; \
bool_t p1inf, p2inf, is_dbl; \
\
p2inf = vec_is_zero(p2->X, 2*sizeof(p2->X)); \
add_##field(dbl.sx, p2->X, p2->X); /* sx = X2+X2 */\
sqr_##field(dbl.R, p2->X); /* X2^2 */\
mul_by_3_##field(dbl.R, dbl.R); /* R = 3*X2^2 */\
add_##field(dbl.H, p2->Y, p2->Y); /* H = 2*Y2 */\
\
p1inf = vec_is_zero(p1->Z, sizeof(p1->Z)); \
sqr_##field(add.H, p1->Z); /* Z1^2 */\
mul_##field(add.R, add.H, p1->Z); /* Z1^3 */\
mul_##field(add.R, add.R, p2->Y); /* S2 = Y2*Z1^3 */\
sub_##field(add.R, add.R, p1->Y); /* R = S2-Y1 */\
\
mul_##field(add.H, add.H, p2->X); /* U2 = X2*Z1^2 */\
\
add_##field(add.sx, add.H, p1->X); /* sx = X1+U2 */\
sub_##field(add.H, add.H, p1->X); /* H = U2-X1 */\
\
mul_##field(p3.Z, add.H, p1->Z); /* Z3 = H*Z1 */\
\
/* make the choice between addition and doubling */ \
is_dbl = vec_is_zero(add.H, 2*sizeof(add.H)); \
vec_select(p3.X, p2, p1, 2*sizeof(p3.X), is_dbl); \
vec_select(p3.Z, dbl.H, p3.Z, sizeof(p3.Z), is_dbl);\
vec_select(&add, &dbl, &add, sizeof(add), is_dbl); \
/* |p3| and |add| hold all inputs now, |p3| will hold output */\
\
sqr_##field(dbl.H, add.H); /* H^2 */\
mul_##field(dbl.R, dbl.H, add.H); /* H^3 */\
mul_##field(dbl.R, dbl.R, p3.Y); /* H^3*S1 */\
mul_##field(p3.Y, dbl.H, p3.X); /* H^2*U1 */\
\
mul_##field(dbl.H, dbl.H, add.sx); /* H^2*sx */\
sqr_##field(p3.X, add.R); /* R^2 */\
sub_##field(p3.X, p3.X, dbl.H); /* X3 = R^2-H^2*sx */\
\
sub_##field(p3.Y, p3.Y, p3.X); /* H^2*U1-X3 */\
mul_##field(p3.Y, p3.Y, add.R); /* R*(H^2*U1-X3) */\
sub_##field(p3.Y, p3.Y, dbl.R); /* Y3 = R*(H^2*U1-X3)-H^3*S1 */\
\
vec_select(p3.X, p2, p3.X, 2*sizeof(p3.X), p1inf); \
vec_select(p3.Z, one, p3.Z, sizeof(p3.Z), p1inf); \
vec_select(out, p1, &p3, sizeof(ptype), p2inf); \
}
/*
* https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
* with twist to handle either input at infinity, which are encoded as Z==0.
*/
#define POINT_ADD_IMPL(ptype, bits, field) \
static void ptype##_add(ptype *out, const ptype *p1, const ptype *p2) \
{ \
ptype p3; \
vec##bits Z1Z1, Z2Z2, U1, S1, H, I, J; \
bool_t p1inf, p2inf; \
\
p1inf = vec_is_zero(p1->Z, sizeof(p1->Z)); \
sqr_##field(Z1Z1, p1->Z); /* Z1Z1 = Z1^2 */\
\
mul_##field(p3.Z, Z1Z1, p1->Z); /* Z1*Z1Z1 */\
mul_##field(p3.Z, p3.Z, p2->Y); /* S2 = Y2*Z1*Z1Z1 */\
\
p2inf = vec_is_zero(p2->Z, sizeof(p2->Z)); \
sqr_##field(Z2Z2, p2->Z); /* Z2Z2 = Z2^2 */\
\
mul_##field(S1, Z2Z2, p2->Z); /* Z2*Z2Z2 */\
mul_##field(S1, S1, p1->Y); /* S1 = Y1*Z2*Z2Z2 */\
\
sub_##field(p3.Z, p3.Z, S1); /* S2-S1 */\
add_##field(p3.Z, p3.Z, p3.Z); /* r = 2*(S2-S1) */\
\
mul_##field(U1, p1->X, Z2Z2); /* U1 = X1*Z2Z2 */\
mul_##field(H, p2->X, Z1Z1); /* U2 = X2*Z1Z1 */\
\
sub_##field(H, H, U1); /* H = U2-U1 */\
\
add_##field(I, H, H); /* 2*H */\
sqr_##field(I, I); /* I = (2*H)^2 */\
\
mul_##field(J, H, I); /* J = H*I */\
mul_##field(S1, S1, J); /* S1*J */\
\
mul_##field(p3.Y, U1, I); /* V = U1*I */\
\
sqr_##field(p3.X, p3.Z); /* r^2 */\
sub_##field(p3.X, p3.X, J); /* r^2-J */\
sub_##field(p3.X, p3.X, p3.Y); \
sub_##field(p3.X, p3.X, p3.Y); /* X3 = r^2-J-2*V */\
\
sub_##field(p3.Y, p3.Y, p3.X); /* V-X3 */\
mul_##field(p3.Y, p3.Y, p3.Z); /* r*(V-X3) */\
sub_##field(p3.Y, p3.Y, S1); \
sub_##field(p3.Y, p3.Y, S1); /* Y3 = r*(V-X3)-2*S1*J */\
\
add_##field(p3.Z, p1->Z, p2->Z); /* Z1+Z2 */\
sqr_##field(p3.Z, p3.Z); /* (Z1+Z2)^2 */\
sub_##field(p3.Z, p3.Z, Z1Z1); /* (Z1+Z2)^2-Z1Z1 */\
sub_##field(p3.Z, p3.Z, Z2Z2); /* (Z1+Z2)^2-Z1Z1-Z2Z2 */\
mul_##field(p3.Z, p3.Z, H); /* Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H */\
\
vec_select(&p3, p1, &p3, sizeof(ptype), p2inf); \
vec_select(out, p2, &p3, sizeof(ptype), p1inf); \
}
/*
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
* with twist to handle either input at infinity, with |p1| encoded as Z==0,
* and |p2| as X==Y==0.
*/
#define POINT_ADD_AFFINE_IMPL(ptype, bits, field, one) \
static void ptype##_add_affine(ptype *out, const ptype *p1, \
const ptype##_affine *p2) \
{ \
ptype p3; \
vec##bits Z1Z1, H, HH, I, J; \
bool_t p1inf, p2inf; \
\
p1inf = vec_is_zero(p1->Z, sizeof(p1->Z)); \
\
sqr_##field(Z1Z1, p1->Z); /* Z1Z1 = Z1^2 */\
\
mul_##field(p3.Z, Z1Z1, p1->Z); /* Z1*Z1Z1 */\
mul_##field(p3.Z, p3.Z, p2->Y); /* S2 = Y2*Z1*Z1Z1 */\
\
p2inf = vec_is_zero(p2->X, 2*sizeof(p2->X)); \
\
mul_##field(H, p2->X, Z1Z1); /* U2 = X2*Z1Z1 */\
sub_##field(H, H, p1->X); /* H = U2-X1 */\
\
sqr_##field(HH, H); /* HH = H^2 */\
add_##field(I, HH, HH); \
add_##field(I, I, I); /* I = 4*HH */\
\
mul_##field(p3.Y, p1->X, I); /* V = X1*I */\
mul_##field(J, H, I); /* J = H*I */\
mul_##field(I, J, p1->Y); /* Y1*J */\
\
sub_##field(p3.Z, p3.Z, p1->Y); /* S2-Y1 */\
add_##field(p3.Z, p3.Z, p3.Z); /* r = 2*(S2-Y1) */\
\
sqr_##field(p3.X, p3.Z); /* r^2 */\
sub_##field(p3.X, p3.X, J); /* r^2-J */\
sub_##field(p3.X, p3.X, p3.Y); \
sub_##field(p3.X, p3.X, p3.Y); /* X3 = r^2-J-2*V */\
\
sub_##field(p3.Y, p3.Y, p3.X); /* V-X3 */\
mul_##field(p3.Y, p3.Y, p3.Z); /* r*(V-X3) */\
sub_##field(p3.Y, p3.Y, I); \
sub_##field(p3.Y, p3.Y, I); /* Y3 = r*(V-X3)-2*Y1*J */\
\
add_##field(p3.Z, p1->Z, H); /* Z1+H */\
sqr_##field(p3.Z, p3.Z); /* (Z1+H)^2 */\
sub_##field(p3.Z, p3.Z, Z1Z1); /* (Z1+H)^2-Z1Z1 */\
sub_##field(p3.Z, p3.Z, HH); /* Z3 = (Z1+H)^2-Z1Z1-HH */\
\
vec_select(p3.Z, one, p3.Z, sizeof(p3.Z), p1inf); \
vec_select(p3.X, p2, p3.X, 2*sizeof(p3.X), p1inf); \
vec_select(out, p1, &p3, sizeof(ptype), p2inf); \
}
/*
* https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
*/
#define POINT_DOUBLE_IMPL_A0(ptype, bits, field) \
static void ptype##_double(ptype *p3, const ptype *p1) \
{ \
vec##bits A, B, C; \
\
sqr_##field(A, p1->X); /* A = X1^2 */\
sqr_##field(B, p1->Y); /* B = Y1^2 */\
sqr_##field(C, B); /* C = B^2 */\
\
add_##field(B, B, p1->X); /* X1+B */\
sqr_##field(B, B); /* (X1+B)^2 */\
sub_##field(B, B, A); /* (X1+B)^2-A */\
sub_##field(B, B, C); /* (X1+B)^2-A-C */\
add_##field(B, B, B); /* D = 2*((X1+B)^2-A-C) */\
\
mul_by_3_##field(A, A); /* E = 3*A */\
\
sqr_##field(p3->X, A); /* F = E^2 */\
sub_##field(p3->X, p3->X, B); \
sub_##field(p3->X, p3->X, B); /* X3 = F-2*D */\
\
add_##field(p3->Z, p1->Z, p1->Z); /* 2*Z1 */\
mul_##field(p3->Z, p3->Z, p1->Y); /* Z3 = 2*Z1*Y1 */\
\
mul_by_8_##field(C, C); /* 8*C */\
sub_##field(p3->Y, B, p3->X); /* D-X3 */\
mul_##field(p3->Y, p3->Y, A); /* E*(D-X3) */\
sub_##field(p3->Y, p3->Y, C); /* Y3 = E*(D-X3)-8*C */\
}
#define POINT_LADDER_PRE_IMPL(ptype, bits, field) \
static void ptype##xz_ladder_pre(ptype##xz *pxz, const ptype *p) \
{ \
mul_##field(pxz->X, p->X, p->Z); /* X2 = X1*Z1 */\
sqr_##field(pxz->Z, p->Z); \
mul_##field(pxz->Z, pxz->Z, p->Z); /* Z2 = Z1^3 */\
}
/*
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3
* with twist to handle either input at infinity, which are encoded as Z==0.
* Just in case, order of doubling and addition is reverse in comparison to
* hyperelliptic.org entry. This was done to minimize temporary storage.
*
* XZ1 is |p|, XZ2&XZ4 are in&out |r|, XZ3&XZ5 are in&out |s|.
*/
#define POINT_LADDER_STEP_IMPL_A0(ptype, bits, field, suffix4b) \
static void ptype##xz_ladder_step(ptype##xz *r, ptype##xz *s, \
const ptype##xz *p) \
{ \
ptype##xz p5; \
vec##bits A, B, C, D, XX, ZZ; \
bool_t r_inf, s_inf; \
/* s += r */\
mul_##field(A, r->X, s->X); /* A = X2*X3 */\
mul_##field(B, r->Z, s->Z); /* B = Z2*Z3 */\
mul_##field(C, r->X, s->Z); /* C = X2*Z3 */\
mul_##field(D, r->Z, s->X); /* D = X3*Z2 */\
\
sqr_##field(A, A); /* (A[-a*B])^2 */\
add_##field(p5.X, C, D); /* C+D */\
mul_##field(p5.X, p5.X, B); /* B*(C+D) */\
mul_by_4b_##suffix4b(B, p5.X); /* b4*B*(C+D) */\
sub_##field(p5.X, A, B); /* (A[-a*B])^2-b4*B*(C+D) */\
mul_##field(p5.X, p5.X, p->Z); /* X5 = Z1*((A[-a*B])^2-b4*B*(C+D)) */\
\
sub_##field(p5.Z, C, D); /* C-D */\
sqr_##field(p5.Z, p5.Z); /* (C-D)^2 */\
mul_##field(p5.Z, p5.Z, p->X); /* Z5 = X1*(C-D)^2 */\
\
r_inf = vec_is_zero(r->Z, sizeof(r->Z)); \
s_inf = vec_is_zero(s->Z, sizeof(s->Z)); \
\
vec_select(&p5, r, &p5, sizeof(ptype##xz), s_inf); \
vec_select(s, s, &p5, sizeof(ptype##xz), r_inf); \
/* r *= 2 */\
sqr_##field(XX, r->X); /* XX = X2^2 */\
sqr_##field(ZZ, r->Z); /* ZZ = Z2^2 */\
\
add_##field(r->Z, r->X, r->Z); /* X2+Z2 */\
sqr_##field(r->Z, r->Z); /* (X2+Z2)^2 */\
sub_##field(r->Z, r->Z, XX); /* (X2+Z2)^2-XX */\
sub_##field(r->Z, r->Z, ZZ); /* E = (X2+Z2)^2-XX-ZZ */\
\
sqr_##field(A, XX); /* (XX[-a*ZZ])^2 */\
mul_##field(B, r->Z, ZZ); /* E*ZZ */\
mul_by_4b_##suffix4b(C, B); /* b4*E*ZZ */\
sub_##field(r->X, A, C); /* X4 = (XX[-a*ZZ])^2-b4*E*ZZ */\
\
sqr_##field(ZZ, ZZ); /* ZZ^2 */\
mul_by_4b_##suffix4b(B, ZZ); /* b4*ZZ^2 */\
mul_##field(r->Z, r->Z, XX); /* E*(XX[+a*ZZ]) */\
add_##field(r->Z, r->Z, r->Z); /* 2*E*(XX[+a*ZZ]) */\
add_##field(r->Z, r->Z, B); /* Z4 = 2*E*(XX[+a*ZZ])+b4*ZZ^2 */\
}
/*
* Recover the |r|'s y-coordinate using Eq. (8) from Brier-Joye,
* "Weierstraß Elliptic Curves and Side-Channel Attacks", with XZ twist
* and conversion to Jacobian coordinates from <openssl>/.../ecp_smpl.c,
* and with twist to recover from |s| at infinity [which occurs when
* multiplying by (order-1)].
*
* X4 = 2*Y1*X2*Z3*Z1*Z2
* Y4 = 2*b*Z3*(Z1*Z2)^2 + Z3*(a*Z1*Z2+X1*X2)*(X1*Z2+X2*Z1) - X3*(X1*Z2-X2*Z1)^2
* Z4 = 2*Y1*Z3*Z2^2*Z1
*
* Z3x2 = 2*Z3
* Y1Z3x2 = Y1*Z3x2
* Z1Z2 = Z1*Z2
* X1Z2 = X1*Z2
* X2Z1 = X2*Z1
* X4 = Y1Z3x2*X2*Z1Z2
* A = b*Z3x2*(Z1Z2)^2
* B = Z3*(a*Z1Z2+X1*X2)*(X1Z2+X2Z1)
* C = X3*(X1Z2-X2Z1)^2
* Y4 = A+B-C
* Z4 = Y1Z3x2*Z1Z2*Z2
*
* XZ1 is |p|, XZ2 is |r|, XZ3 is |s|, 'a' is 0.
*/
#define POINT_LADDER_POST_IMPL_A0(ptype, bits, field, suffixb) \
static void ptype##xz_ladder_post(ptype *p4, \
const ptype##xz *r, const ptype##xz *s, \
const ptype##xz *p, const vec##bits Y1) \
{ \
vec##bits Z3x2, Y1Z3x2, Z1Z2, X1Z2, X2Z1, A, B, C; \
bool_t s_inf; \
\
add_##field(Z3x2, s->Z, s->Z); /* Z3x2 = 2*Z3 */\
mul_##field(Y1Z3x2, Y1, Z3x2); /* Y1Z3x2 = Y1*Z3x2 */\
mul_##field(Z1Z2, p->Z, r->Z); /* Z1Z2 = Z1*Z2 */\
mul_##field(X1Z2, p->X, r->Z); /* X1Z2 = X1*Z2 */\
mul_##field(X2Z1, r->X, p->Z); /* X2Z1 = X2*Z1 */\
\
mul_##field(p4->X, Y1Z3x2, r->X); /* Y1Z3x2*X2 */\
mul_##field(p4->X, p4->X, Z1Z2); /* X4 = Y1Z3x2*X2*Z1Z2 */\
\
sqr_##field(A, Z1Z2); /* (Z1Z2)^2 */\
mul_##field(B, A, Z3x2); /* Z3x2*(Z1Z2)^2 */\
mul_by_b_##suffixb(A, B); /* A = b*Z3x2*(Z1Z2)^2 */\
\
mul_##field(B, p->X, r->X); /* [a*Z1Z2+]X1*X2 */\
mul_##field(B, B, s->Z); /* Z3*([a*Z1Z2+]X1*X2) */\
add_##field(C, X1Z2, X2Z1); /* X1Z2+X2Z1 */\
mul_##field(B, B, C); /* B = Z3*([a*Z2Z1+]X1*X2)*(X1Z2+X2Z1) */\
\
sub_##field(C, X1Z2, X2Z1); /* X1Z2-X2Z1 */\
sqr_##field(C, C); /* (X1Z2-X2Z1)^2 */\
mul_##field(C, C, s->X); /* C = X3*(X1Z2-X2Z1)^2 */\
\
add_##field(A, A, B); /* A+B */\
sub_##field(A, A, C); /* Y4 = A+B-C */\
\
mul_##field(p4->Z, Z1Z2, r->Z); /* Z1Z2*Z2 */\
mul_##field(p4->Z, p4->Z, Y1Z3x2); /* Y1Z3x2*Z1Z2*Z2 */\
\
s_inf = vec_is_zero(s->Z, sizeof(s->Z)); \
vec_select(p4->X, p->X, p4->X, sizeof(p4->X), s_inf); \
vec_select(p4->Y, Y1, A, sizeof(p4->Y), s_inf); \
vec_select(p4->Z, p->Z, p4->Z, sizeof(p4->Z), s_inf); \
ptype##_cneg(p4, s_inf); \
/* to Jacobian */\
mul_##field(p4->X, p4->X, p4->Z); /* X4 = X4*Z4 */\
sqr_##field(B, p4->Z); \
mul_##field(p4->Y, p4->Y, B); /* Y4 = Y4*Z4^2 */\
}
#define POINT_IS_EQUAL_IMPL(ptype, bits, field) \
static limb_t ptype##_is_equal(const ptype *p1, const ptype *p2) \
{ \
vec##bits Z1Z1, Z2Z2; \
ptype##_affine a1, a2; \
bool_t is_inf1 = vec_is_zero(p1->Z, sizeof(p1->Z)); \
bool_t is_inf2 = vec_is_zero(p2->Z, sizeof(p2->Z)); \
\
sqr_##field(Z1Z1, p1->Z); /* Z1Z1 = Z1^2 */\
sqr_##field(Z2Z2, p2->Z); /* Z2Z2 = Z2^2 */\
\
mul_##field(a1.X, p1->X, Z2Z2); /* U1 = X1*Z2Z2 */\
mul_##field(a2.X, p2->X, Z1Z1); /* U2 = X2*Z1Z1 */\
\
mul_##field(a1.Y, p1->Y, p2->Z); /* Y1*Z2 */\
mul_##field(a2.Y, p2->Y, p1->Z); /* Y2*Z1 */\
\
mul_##field(a1.Y, a1.Y, Z2Z2); /* S1 = Y1*Z2*Z2Z2 */\
mul_##field(a2.Y, a2.Y, Z1Z1); /* S2 = Y2*Z1*Z1Z1 */\
\
return vec_is_equal(&a1, &a2, sizeof(a1)) & (is_inf1 ^ is_inf2 ^ 1); \
}
/*
* https://eprint.iacr.org/2015/1060, algorithm 7 with a twist to handle
* |p3| pointing at either |p1| or |p2|. This is resolved by adding |t5|
* and replacing few first references to |X3| in the formula, up to step
* 21, with it. 12M[+27A], doubling and infinity are handled by the
* formula itself. Infinity is to be encoded as [0, !0, 0].
*/
#define POINT_PROJ_DADD_IMPL_A0(ptype, bits, field, suffixb) \
static void ptype##proj_dadd(ptype##proj *p3, const ptype##proj *p1, \
const ptype##proj *p2) \
{ \
vec##bits t0, t1, t2, t3, t4, t5; \
\
mul_##field(t0, p1->X, p2->X); /* 1. t0 = X1*X2 */\
mul_##field(t1, p1->Y, p2->Y); /* 2. t1 = Y1*Y2 */\
mul_##field(t2, p1->Z, p2->Z); /* 3. t2 = Z1*Z2 */\
add_##field(t3, p1->X, p1->Y); /* 4. t3 = X1+Y1 */\
add_##field(t4, p2->X, p2->Y); /* 5. t4 = X2+Y2 */\
mul_##field(t3, t3, t4); /* 6. t3 = t3*t4 */\
add_##field(t4, t0, t1); /* 7. t4 = t0+t1 */\
sub_##field(t3, t3, t4); /* 8. t3 = t3-t4 */\
add_##field(t4, p1->Y, p1->Z); /* 9. t4 = Y1+Z1 */\
add_##field(t5, p2->Y, p2->Z); /* 10. t5 = Y2+Z2 */\
mul_##field(t4, t4, t5); /* 11. t4 = t4*t5 */\
add_##field(t5, t1, t2); /* 12. t5 = t1+t2 */\
sub_##field(t4, t4, t5); /* 13. t4 = t4-t5 */\
add_##field(t5, p1->X, p1->Z); /* 14. t5 = X1+Z1 */\
add_##field(p3->Y, p2->X, p2->Z); /* 15. Y3 = X2+Z2 */\
mul_##field(t5, t5, p3->Y); /* 16. t5 = t5*Y3 */\
add_##field(p3->Y, t0, t2); /* 17. Y3 = t0+t2 */\
sub_##field(p3->Y, t5, p3->Y); /* 18. Y3 = t5-Y3 */\
mul_by_3_##field(t0, t0); /* 19-20. t0 = 3*t0 */\
mul_by_3_##field(t5, t2); /* 21. t5 = 3*t2 */\
mul_by_b_##suffixb(t2, t5); /* 21. t2 = b*t5 */\
add_##field(p3->Z, t1, t2); /* 22. Z3 = t1+t2 */\
sub_##field(t1, t1, t2); /* 23. t1 = t1-t2 */\
mul_by_3_##field(t5, p3->Y); /* 24. t5 = 3*Y3 */\
mul_by_b_##suffixb(p3->Y, t5); /* 24. Y3 = b*t5 */\
mul_##field(p3->X, t4, p3->Y); /* 25. X3 = t4*Y3 */\
mul_##field(t2, t3, t1); /* 26. t2 = t3*t1 */\
sub_##field(p3->X, t2, p3->X); /* 27. X3 = t2-X3 */\
mul_##field(p3->Y, p3->Y, t0); /* 28. Y3 = Y3*t0 */\
mul_##field(t1, t1, p3->Z); /* 29. t1 = t1*Z3 */\
add_##field(p3->Y, t1, p3->Y); /* 30. Y3 = t1+Y3 */\
mul_##field(t0, t0, t3); /* 31. t0 = t0*t3 */\
mul_##field(p3->Z, p3->Z, t4); /* 32. Z3 = Z3*t4 */\
add_##field(p3->Z, p3->Z, t0); /* 33. Z3 = Z3+t0 */\
}
/*
* https://eprint.iacr.org/2015/1060, algorithm 8 with a twist to handle
* |p2| being infinity encoded as [0, 0]. 11M[+21A].
*/
#define POINT_PROJ_DADD_AFFINE_IMPL_A0(ptype, bits, field, suffixb) \
static void ptype##proj_dadd_affine(ptype##proj *out, const ptype##proj *p1, \
const ptype##_affine *p2) \
{ \
ptype##proj p3[1]; \
vec##bits t0, t1, t2, t3, t4; \
limb_t p2inf = vec_is_zero(p2, sizeof(*p2)); \
\
mul_##field(t0, p1->X, p2->X); /* 1. t0 = X1*X2 */\
mul_##field(t1, p1->Y, p2->Y); /* 2. t1 = Y1*Y2 */\
add_##field(t3, p1->X, p1->Y); /* 3. t3 = X1+Y1 */\
add_##field(t4, p2->X, p2->Y); /* 4. t4 = X2+Y2 */\
mul_##field(t3, t3, t4); /* 5. t3 = t3*t4 */\
add_##field(t4, t0, t1); /* 6. t4 = t0+t1 */\
sub_##field(t3, t3, t4); /* 7. t3 = t3-t4 */\
mul_##field(t4, p2->Y, p1->Z); /* 8. t4 = Y2*Z1 */\
add_##field(t4, t4, p1->Y); /* 9. t4 = t4+Y1 */\
mul_##field(p3->Y, p2->X, p1->Z); /* 10. Y3 = X2*Z1 */\
add_##field(p3->Y, p3->Y, p1->X); /* 11. Y3 = Y3+X1 */\
mul_by_3_##field(t0, t0); /* 12-13. t0 = 3*t0 */\
mul_by_b_##suffixb(t2, p1->Z); /* 14. t2 = b*Z1 */\
mul_by_3_##field(t2, t2); /* 14. t2 = 3*t2 */\
add_##field(p3->Z, t1, t2); /* 15. Z3 = t1+t2 */\
sub_##field(t1, t1, t2); /* 16. t1 = t1-t2 */\
mul_by_b_##suffixb(t2, p3->Y); /* 17. t2 = b*Y3 */\
mul_by_3_##field(p3->Y, t2); /* 17. Y3 = 3*t2 */\
mul_##field(p3->X, t4, p3->Y); /* 18. X3 = t4*Y3 */\
mul_##field(t2, t3, t1); /* 19. t2 = t3*t1 */\
sub_##field(p3->X, t2, p3->X); /* 20. X3 = t2-X3 */\
mul_##field(p3->Y, p3->Y, t0); /* 21. Y3 = Y3*t0 */\
mul_##field(t1, t1, p3->Z); /* 22. t1 = t1*Z3 */\
add_##field(p3->Y, t1, p3->Y); /* 23. Y3 = t1+Y3 */\
mul_##field(t0, t0, t3); /* 24. t0 = t0*t3 */\
mul_##field(p3->Z, p3->Z, t4); /* 25. Z3 = Z3*t4 */\
add_##field(p3->Z, p3->Z, t0); /* 26. Z3 = Z3+t0 */\
\
vec_select(out, p1, p3, sizeof(*out), p2inf); \
}
/*
* https://eprint.iacr.org/2015/1060, algorithm 9 with a twist to handle
* |p3| pointing at |p1|. This is resolved by adding |t3| to hold X*Y
* and reordering operations to bring references to |p1| forward.
* 6M+2S[+13A].
*/
#define POINT_PROJ_DOUBLE_IMPL_A0(ptype, bits, field, suffixb) \
static void ptype##proj_double(ptype##proj *p3, const ptype##proj *p1) \
{ \
vec##bits t0, t1, t2, t3; \
\
sqr_##field(t0, p1->Y); /* 1. t0 = Y*Y */\
mul_##field(t1, p1->Y, p1->Z); /* 5. t1 = Y*Z */\
sqr_##field(t2, p1->Z); /* 6. t2 = Z*Z */\
mul_##field(t3, p1->X, p1->Y); /* 16. t3 = X*Y */\
lshift_##field(p3->Z, t0, 3); /* 2-4. Z3 = 8*t0 */\
mul_by_b_##suffixb(p3->X, t2); /* 7. t2 = b*t2 */\
mul_by_3_##field(t2, p3->X); /* 7. t2 = 3*t2 */\
mul_##field(p3->X, t2, p3->Z); /* 8. X3 = t2*Z3 */\
add_##field(p3->Y, t0, t2); /* 9. Y3 = t0+t2 */\
mul_##field(p3->Z, t1, p3->Z); /* 10. Z3 = t1*Z3 */\
mul_by_3_##field(t2, t2); /* 11-12. t2 = 3*t2 */\
sub_##field(t0, t0, t2); /* 13. t0 = t0-t2 */\
mul_##field(p3->Y, t0, p3->Y); /* 14. Y3 = t0*Y3 */\
add_##field(p3->Y, p3->X, p3->Y); /* 15. Y3 = X3+Y3 */\
mul_##field(p3->X, t0, t3); /* 17. X3 = t0*t3 */\
add_##field(p3->X, p3->X, p3->X); /* 18. X3 = X3+X3 */\
}
#define POINT_PROJ_TO_JACOBIAN_IMPL(ptype, bits, field) \
static void ptype##proj_to_Jacobian(ptype *out, const ptype##proj *in) \
{ \
vec##bits ZZ; \
\
sqr_##field(ZZ, in->Z); \
mul_##field(out->X, in->X, in->Z); \
mul_##field(out->Y, in->Y, ZZ); \
vec_copy(out->Z, in->Z, sizeof(out->Z)); \
}
#define POINT_TO_PROJECTIVE_IMPL(ptype, bits, field, one) \
static void ptype##_to_projective(ptype##proj *out, const ptype *in) \
{ \
vec##bits ZZ; \
limb_t is_inf = vec_is_zero(in->Z, sizeof(in->Z)); \
\
sqr_##field(ZZ, in->Z); \
mul_##field(out->X, in->X, in->Z); \
vec_select(out->Y, one, in->Y, sizeof(out->Y), is_inf); \
mul_##field(out->Z, ZZ, in->Z); \
}
/******************* !!!!! NOT CONSTANT TIME !!!!! *******************/
/*
* http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s
* http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1
* with twist to handle either input at infinity. Addition costs 12M+2S,
* while conditional doubling - 4M+6M+3S.
*/
#define POINTXYZZ_DADD_IMPL(ptype, bits, field) \
static void ptype##xyzz_dadd(ptype##xyzz *p3, const ptype##xyzz *p1, \
const ptype##xyzz *p2) \
{ \
vec##bits U, S, P, R; \
\
if (vec_is_zero(p2->ZZZ, 2*sizeof(p2->ZZZ))) { \
vec_copy(p3, p1, sizeof(*p3)); \
return; \
} else if (vec_is_zero(p1->ZZZ, 2*sizeof(p1->ZZZ))) { \
vec_copy(p3, p2, sizeof(*p3)); \
return; \
} \
\
mul_##field(U, p1->X, p2->ZZ); /* U1 = X1*ZZ2 */\
mul_##field(S, p1->Y, p2->ZZZ); /* S1 = Y1*ZZZ2 */\
mul_##field(P, p2->X, p1->ZZ); /* U2 = X2*ZZ1 */\
mul_##field(R, p2->Y, p1->ZZZ); /* S2 = Y2*ZZZ1 */\
sub_##field(P, P, U); /* P = U2-U1 */\
sub_##field(R, R, S); /* R = S2-S1 */\
\
if (!vec_is_zero(P, sizeof(P))) { /* X1!=X2 */\
vec##bits PP, PPP, Q; /* add |p1| and |p2| */\
\
sqr_##field(PP, P); /* PP = P^2 */\
mul_##field(PPP, PP, P); /* PPP = P*PP */\
mul_##field(Q, U, PP); /* Q = U1*PP */\
sqr_##field(p3->X, R); /* R^2 */\
add_##field(P, Q, Q); \
sub_##field(p3->X, p3->X, PPP); /* R^2-PPP */\
sub_##field(p3->X, p3->X, P); /* X3 = R^2-PPP-2*Q */\
sub_##field(Q, Q, p3->X); \
mul_##field(Q, Q, R); /* R*(Q-X3) */\
mul_##field(p3->Y, S, PPP); /* S1*PPP */\
sub_##field(p3->Y, Q, p3->Y); /* Y3 = R*(Q-X3)-S1*PPP */\
mul_##field(p3->ZZ, p1->ZZ, p2->ZZ); /* ZZ1*ZZ2 */\
mul_##field(p3->ZZZ, p1->ZZZ, p2->ZZZ); /* ZZZ1*ZZZ2 */\
mul_##field(p3->ZZ, p3->ZZ, PP); /* ZZ3 = ZZ1*ZZ2*PP */\
mul_##field(p3->ZZZ, p3->ZZZ, PPP); /* ZZZ3 = ZZZ1*ZZZ2*PPP */\
} else if (vec_is_zero(R, sizeof(R))) { /* X1==X2 && Y1==Y2 */\
vec##bits V, W, M; /* double |p1| */\
\
add_##field(U, p1->Y, p1->Y); /* U = 2*Y1 */\
sqr_##field(V, U); /* V = U^2 */\
mul_##field(W, V, U); /* W = U*V */\
mul_##field(S, p1->X, V); /* S = X1*V */\
sqr_##field(M, p1->X); \
mul_by_3_##field(M, M); /* M = 3*X1^2[+a*ZZ1^2] */\
sqr_##field(p3->X, M); \
add_##field(U, S, S); /* 2*S */\
sub_##field(p3->X, p3->X, U); /* X3 = M^2-2*S */\
mul_##field(p3->Y, W, p1->Y); /* W*Y1 */\
sub_##field(S, S, p3->X); \
mul_##field(S, S, M); /* M*(S-X3) */\
sub_##field(p3->Y, S, p3->Y); /* Y3 = M*(S-X3)-W*Y1 */\
mul_##field(p3->ZZ, p1->ZZ, V); /* ZZ3 = V*ZZ1 */\
mul_##field(p3->ZZZ, p1->ZZZ, W); /* ZZ3 = W*ZZZ1 */\
} else { /* X1==X2 && Y1==-Y2 */\
vec_zero(p3->ZZZ, 2*sizeof(p3->ZZZ)); /* set |p3| to infinity */\
} \
}
/*
* http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s
* http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-mdbl-2008-s-1
* with twists to handle even subtractions and either input at infinity.
* Addition costs 8M+2S, while conditional doubling - 2M+4M+3S.
*/
#define POINTXYZZ_DADD_AFFINE_IMPL(ptype, bits, field, one) \
static void ptype##xyzz_dadd_affine(ptype##xyzz *p3, const ptype##xyzz *p1, \
const ptype##_affine *p2, \
bool_t subtract) \
{ \
vec##bits P, R; \
\
if (vec_is_zero(p2, sizeof(*p2))) { \
vec_copy(p3, p1, sizeof(*p3)); \
return; \
} else if (vec_is_zero(p1->ZZZ, 2*sizeof(p1->ZZZ))) { \
vec_copy(p3->X, p2->X, 2*sizeof(p3->X));\
cneg_##field(p3->ZZZ, one, subtract); \
vec_copy(p3->ZZ, one, sizeof(p3->ZZ)); \
return; \
} \
\
mul_##field(P, p2->X, p1->ZZ); /* U2 = X2*ZZ1 */\
mul_##field(R, p2->Y, p1->ZZZ); /* S2 = Y2*ZZZ1 */\
cneg_##field(R, R, subtract); \
sub_##field(P, P, p1->X); /* P = U2-X1 */\
sub_##field(R, R, p1->Y); /* R = S2-Y1 */\
\
if (!vec_is_zero(P, sizeof(P))) { /* X1!=X2 */\
vec##bits PP, PPP, Q; /* add |p2| to |p1| */\
\
sqr_##field(PP, P); /* PP = P^2 */\
mul_##field(PPP, PP, P); /* PPP = P*PP */\
mul_##field(Q, p1->X, PP); /* Q = X1*PP */\
sqr_##field(p3->X, R); /* R^2 */\
add_##field(P, Q, Q); \
sub_##field(p3->X, p3->X, PPP); /* R^2-PPP */\
sub_##field(p3->X, p3->X, P); /* X3 = R^2-PPP-2*Q */\
sub_##field(Q, Q, p3->X); \
mul_##field(Q, Q, R); /* R*(Q-X3) */\
mul_##field(p3->Y, p1->Y, PPP); /* Y1*PPP */\
sub_##field(p3->Y, Q, p3->Y); /* Y3 = R*(Q-X3)-Y1*PPP */\
mul_##field(p3->ZZ, p1->ZZ, PP); /* ZZ3 = ZZ1*PP */\
mul_##field(p3->ZZZ, p1->ZZZ, PPP); /* ZZZ3 = ZZZ1*PPP */\
} else if (vec_is_zero(R, sizeof(R))) { /* X1==X2 && Y1==Y2 */\
vec##bits U, S, M; /* double |p2| */\
\
add_##field(U, p2->Y, p2->Y); /* U = 2*Y1 */\
sqr_##field(p3->ZZ, U); /* [ZZ3 =] V = U^2 */\
mul_##field(p3->ZZZ, p3->ZZ, U); /* [ZZZ3 =] W = U*V */\
mul_##field(S, p2->X, p3->ZZ); /* S = X1*V */\
sqr_##field(M, p2->X); \
mul_by_3_##field(M, M); /* M = 3*X1^2[+a] */\
sqr_##field(p3->X, M); \
add_##field(U, S, S); /* 2*S */\
sub_##field(p3->X, p3->X, U); /* X3 = M^2-2*S */\
mul_##field(p3->Y, p3->ZZZ, p2->Y); /* W*Y1 */\
sub_##field(S, S, p3->X); \
mul_##field(S, S, M); /* M*(S-X3) */\
sub_##field(p3->Y, S, p3->Y); /* Y3 = M*(S-X3)-W*Y1 */\
cneg_##field(p3->ZZZ, p3->ZZZ, subtract); \
} else { /* X1==X2 && Y1==-Y2 */\
vec_zero(p3->ZZZ, 2*sizeof(p3->ZZZ)); /* set |p3| to infinity */\
} \
}
#define POINTXYZZ_TO_JACOBIAN_IMPL(ptype, bits, field) \
static void ptype##xyzz_to_Jacobian(ptype *out, const ptype##xyzz *in) \
{ \
mul_##field(out->X, in->X, in->ZZ); \
mul_##field(out->Y, in->Y, in->ZZZ); \
vec_copy(out->Z, in->ZZ, sizeof(out->Z)); \
}
#define POINT_TO_XYZZ_IMPL(ptype, bits, field) \
static void ptype##_to_xyzz(ptype##xyzz *out, const ptype *in) \
{ \
vec_copy(out->X, in->X, 2*sizeof(out->X)); \
sqr_##field(out->ZZ, in->Z); \
mul_##field(out->ZZZ, out->ZZ, in->Z); \
}
#endif