forked from supranational/blst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap_to_g2.c
444 lines (396 loc) · 19.4 KB
/
map_to_g2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
* Copyright Supranational LLC
* Licensed under the Apache License, Version 2.0, see LICENSE for details.
* SPDX-License-Identifier: Apache-2.0
*/
#include "point.h"
#include "fields.h"
/*
* y^2 = x^3 + A'*x + B', isogenous one
*/
static const vec384x Aprime_E2 = { /* 240*i */
{ 0 },
{ TO_LIMB_T(0xe53a000003135242), TO_LIMB_T(0x01080c0fdef80285),
TO_LIMB_T(0xe7889edbe340f6bd), TO_LIMB_T(0x0b51375126310601),
TO_LIMB_T(0x02d6985717c744ab), TO_LIMB_T(0x1220b4e979ea5467) }
};
static const vec384x Bprime_E2 = { /* 1012 + 1012*i */
{ TO_LIMB_T(0x22ea00000cf89db2), TO_LIMB_T(0x6ec832df71380aa4),
TO_LIMB_T(0x6e1b94403db5a66e), TO_LIMB_T(0x75bf3c53a79473ba),
TO_LIMB_T(0x3dd3a569412c0a34), TO_LIMB_T(0x125cdb5e74dc4fd1) },
{ TO_LIMB_T(0x22ea00000cf89db2), TO_LIMB_T(0x6ec832df71380aa4),
TO_LIMB_T(0x6e1b94403db5a66e), TO_LIMB_T(0x75bf3c53a79473ba),
TO_LIMB_T(0x3dd3a569412c0a34), TO_LIMB_T(0x125cdb5e74dc4fd1) }
};
static void map_fp2_times_Zz(vec384x map[], const vec384x isogeny_map[],
const vec384x Zz_powers[], size_t n)
{
while (n--)
mul_fp2(map[n], isogeny_map[n], Zz_powers[n]);
}
static void map_fp2(vec384x acc, const vec384x x, const vec384x map[], size_t n)
{
while (n--) {
mul_fp2(acc, acc, x);
add_fp2(acc, acc, map[n]);
}
}
static void isogeny_map_to_E2(POINTonE2 *out, const POINTonE2 *p)
{
/*
* x = x_num / x_den, where
* x_num = k_(1,3) * x'^3 + k_(1,2) * x'^2 + k_(1,1) * x' + k_(1,0)
* ...
*/
static const vec384x isogeny_map_x_num[] = { /* (k_(1,*)<<384) % P */
{{ TO_LIMB_T(0x47f671c71ce05e62), TO_LIMB_T(0x06dd57071206393e),
TO_LIMB_T(0x7c80cd2af3fd71a2), TO_LIMB_T(0x048103ea9e6cd062),
TO_LIMB_T(0xc54516acc8d037f6), TO_LIMB_T(0x13808f550920ea41) },
{ TO_LIMB_T(0x47f671c71ce05e62), TO_LIMB_T(0x06dd57071206393e),
TO_LIMB_T(0x7c80cd2af3fd71a2), TO_LIMB_T(0x048103ea9e6cd062),
TO_LIMB_T(0xc54516acc8d037f6), TO_LIMB_T(0x13808f550920ea41) }},
{{ 0 },
{ TO_LIMB_T(0x5fe55555554c71d0), TO_LIMB_T(0x873fffdd236aaaa3),
TO_LIMB_T(0x6a6b4619b26ef918), TO_LIMB_T(0x21c2888408874945),
TO_LIMB_T(0x2836cda7028cabc5), TO_LIMB_T(0x0ac73310a7fd5abd) }},
{{ TO_LIMB_T(0x0a0c5555555971c3), TO_LIMB_T(0xdb0c00101f9eaaae),
TO_LIMB_T(0xb1fb2f941d797997), TO_LIMB_T(0xd3960742ef416e1c),
TO_LIMB_T(0xb70040e2c20556f4), TO_LIMB_T(0x149d7861e581393b) },
{ TO_LIMB_T(0xaff2aaaaaaa638e8), TO_LIMB_T(0x439fffee91b55551),
TO_LIMB_T(0xb535a30cd9377c8c), TO_LIMB_T(0x90e144420443a4a2),
TO_LIMB_T(0x941b66d3814655e2), TO_LIMB_T(0x0563998853fead5e) }},
{{ TO_LIMB_T(0x40aac71c71c725ed), TO_LIMB_T(0x190955557a84e38e),
TO_LIMB_T(0xd817050a8f41abc3), TO_LIMB_T(0xd86485d4c87f6fb1),
TO_LIMB_T(0x696eb479f885d059), TO_LIMB_T(0x198e1a74328002d2) },
{ 0 }}
};
/* ...
* x_den = x'^2 + k_(2,1) * x' + k_(2,0)
*/
static const vec384x isogeny_map_x_den[] = { /* (k_(2,*)<<384) % P */
{{ 0 },
{ TO_LIMB_T(0x1f3affffff13ab97), TO_LIMB_T(0xf25bfc611da3ff3e),
TO_LIMB_T(0xca3757cb3819b208), TO_LIMB_T(0x3e6427366f8cec18),
TO_LIMB_T(0x03977bc86095b089), TO_LIMB_T(0x04f69db13f39a952) }},
{{ TO_LIMB_T(0x447600000027552e), TO_LIMB_T(0xdcb8009a43480020),
TO_LIMB_T(0x6f7ee9ce4a6e8b59), TO_LIMB_T(0xb10330b7c0a95bc6),
TO_LIMB_T(0x6140b1fcfb1e54b7), TO_LIMB_T(0x0381be097f0bb4e1) },
{ TO_LIMB_T(0x7588ffffffd8557d), TO_LIMB_T(0x41f3ff646e0bffdf),
TO_LIMB_T(0xf7b1e8d2ac426aca), TO_LIMB_T(0xb3741acd32dbb6f8),
TO_LIMB_T(0xe9daf5b9482d581f), TO_LIMB_T(0x167f53e0ba7431b8) }}
};
/*
* y = y' * y_num / y_den, where
* y_num = k_(3,3) * x'^3 + k_(3,2) * x'^2 + k_(3,1) * x' + k_(3,0)
* ...
*/
static const vec384x isogeny_map_y_num[] = { /* (k_(3,*)<<384) % P */
{{ TO_LIMB_T(0x96d8f684bdfc77be), TO_LIMB_T(0xb530e4f43b66d0e2),
TO_LIMB_T(0x184a88ff379652fd), TO_LIMB_T(0x57cb23ecfae804e1),
TO_LIMB_T(0x0fd2e39eada3eba9), TO_LIMB_T(0x08c8055e31c5d5c3) },
{ TO_LIMB_T(0x96d8f684bdfc77be), TO_LIMB_T(0xb530e4f43b66d0e2),
TO_LIMB_T(0x184a88ff379652fd), TO_LIMB_T(0x57cb23ecfae804e1),
TO_LIMB_T(0x0fd2e39eada3eba9), TO_LIMB_T(0x08c8055e31c5d5c3) }},
{{ 0 },
{ TO_LIMB_T(0xbf0a71c71c91b406), TO_LIMB_T(0x4d6d55d28b7638fd),
TO_LIMB_T(0x9d82f98e5f205aee), TO_LIMB_T(0xa27aa27b1d1a18d5),
TO_LIMB_T(0x02c3b2b2d2938e86), TO_LIMB_T(0x0c7d13420b09807f) }},
{{ TO_LIMB_T(0xd7f9555555531c74), TO_LIMB_T(0x21cffff748daaaa8),
TO_LIMB_T(0x5a9ad1866c9bbe46), TO_LIMB_T(0x4870a2210221d251),
TO_LIMB_T(0x4a0db369c0a32af1), TO_LIMB_T(0x02b1ccc429ff56af) },
{ TO_LIMB_T(0xe205aaaaaaac8e37), TO_LIMB_T(0xfcdc000768795556),
TO_LIMB_T(0x0c96011a8a1537dd), TO_LIMB_T(0x1c06a963f163406e),
TO_LIMB_T(0x010df44c82a881e6), TO_LIMB_T(0x174f45260f808feb) }},
{{ TO_LIMB_T(0xa470bda12f67f35c), TO_LIMB_T(0xc0fe38e23327b425),
TO_LIMB_T(0xc9d3d0f2c6f0678d), TO_LIMB_T(0x1c55c9935b5a982e),
TO_LIMB_T(0x27f6c0e2f0746764), TO_LIMB_T(0x117c5e6e28aa9054) },
{ 0 }}
};
/* ...
* y_den = x'^3 + k_(4,2) * x'^2 + k_(4,1) * x' + k_(4,0)
*/
static const vec384x isogeny_map_y_den[] = { /* (k_(4,*)<<384) % P */
{{ TO_LIMB_T(0x0162fffffa765adf), TO_LIMB_T(0x8f7bea480083fb75),
TO_LIMB_T(0x561b3c2259e93611), TO_LIMB_T(0x11e19fc1a9c875d5),
TO_LIMB_T(0xca713efc00367660), TO_LIMB_T(0x03c6a03d41da1151) },
{ TO_LIMB_T(0x0162fffffa765adf), TO_LIMB_T(0x8f7bea480083fb75),
TO_LIMB_T(0x561b3c2259e93611), TO_LIMB_T(0x11e19fc1a9c875d5),
TO_LIMB_T(0xca713efc00367660), TO_LIMB_T(0x03c6a03d41da1151) }},
{{ 0 },
{ TO_LIMB_T(0x5db0fffffd3b02c5), TO_LIMB_T(0xd713f52358ebfdba),
TO_LIMB_T(0x5ea60761a84d161a), TO_LIMB_T(0xbb2c75a34ea6c44a),
TO_LIMB_T(0x0ac6735921c1119b), TO_LIMB_T(0x0ee3d913bdacfbf6) }},
{{ TO_LIMB_T(0x66b10000003affc5), TO_LIMB_T(0xcb1400e764ec0030),
TO_LIMB_T(0xa73e5eb56fa5d106), TO_LIMB_T(0x8984c913a0fe09a9),
TO_LIMB_T(0x11e10afb78ad7f13), TO_LIMB_T(0x05429d0e3e918f52) },
{ TO_LIMB_T(0x534dffffffc4aae6), TO_LIMB_T(0x5397ff174c67ffcf),
TO_LIMB_T(0xbff273eb870b251d), TO_LIMB_T(0xdaf2827152870915),
TO_LIMB_T(0x393a9cbaca9e2dc3), TO_LIMB_T(0x14be74dbfaee5748) }}
};
vec384x Zz_powers[3], map[3], xn, xd, yn, yd;
/* lay down Z^2 powers in descending order */
sqr_fp2(Zz_powers[2], p->Z); /* ZZ^1 */
sqr_fp2(Zz_powers[1], Zz_powers[2]); /* ZZ^2 1+1 */
mul_fp2(Zz_powers[0], Zz_powers[2], Zz_powers[1]); /* ZZ^3 2+1 */
map_fp2_times_Zz(map, isogeny_map_x_num, Zz_powers, 3);
mul_fp2(xn, p->X, isogeny_map_x_num[3]);
add_fp2(xn, xn, map[2]);
map_fp2(xn, p->X, map, 2);
map_fp2_times_Zz(map, isogeny_map_x_den, Zz_powers + 1, 2);
add_fp2(xd, p->X, map[1]);
map_fp2(xd, p->X, map, 1);
mul_fp2(xd, xd, Zz_powers[2]); /* xd *= Z^2 */
map_fp2_times_Zz(map, isogeny_map_y_num, Zz_powers, 3);
mul_fp2(yn, p->X, isogeny_map_y_num[3]);
add_fp2(yn, yn, map[2]);
map_fp2(yn, p->X, map, 2);
mul_fp2(yn, yn, p->Y); /* yn *= Y */
map_fp2_times_Zz(map, isogeny_map_y_den, Zz_powers, 3);
add_fp2(yd, p->X, map[2]);
map_fp2(yd, p->X, map, 2);
mul_fp2(Zz_powers[2], Zz_powers[2], p->Z);
mul_fp2(yd, yd, Zz_powers[2]); /* yd *= Z^3 */
/* convert (xn, xd, yn, yd) to Jacobian coordinates */
mul_fp2(out->Z, xd, yd); /* Z = xd * yd */
mul_fp2(out->X, xn, yd);
mul_fp2(out->X, out->X, out->Z); /* X = xn * xd * yd^2 */
sqr_fp2(out->Y, out->Z);
mul_fp2(out->Y, out->Y, xd);
mul_fp2(out->Y, out->Y, yn); /* Y = yn * xd^3 * yd^2 */
}
static void map_to_isogenous_E2(POINTonE2 *p, const vec384x u)
{
static const vec384x minus_A = {
{ 0 },
{ TO_LIMB_T(0xd4c4fffffcec5869), TO_LIMB_T(0x1da3f3eed25bfd79),
TO_LIMB_T(0x7fa833c5136fff67), TO_LIMB_T(0x59261433cd540cbd),
TO_LIMB_T(0x48450f5f2b84682c), TO_LIMB_T(0x07e05d00bf959233) }
};
static const vec384x Z = { /* -2 - i */
{ TO_LIMB_T(0x87ebfffffff9555c), TO_LIMB_T(0x656fffe5da8ffffa),
TO_LIMB_T(0x0fd0749345d33ad2), TO_LIMB_T(0xd951e663066576f4),
TO_LIMB_T(0xde291a3d41e980d3), TO_LIMB_T(0x0815664c7dfe040d) },
{ TO_LIMB_T(0x43f5fffffffcaaae), TO_LIMB_T(0x32b7fff2ed47fffd),
TO_LIMB_T(0x07e83a49a2e99d69), TO_LIMB_T(0xeca8f3318332bb7a),
TO_LIMB_T(0xef148d1ea0f4c069), TO_LIMB_T(0x040ab3263eff0206) }
};
static const vec384x recip_ZZZ = { /* 1/(Z^3) */
{ TO_LIMB_T(0x65018f5c28f598eb), TO_LIMB_T(0xe6020417f022d916),
TO_LIMB_T(0xd6327313288369c7), TO_LIMB_T(0x622ded8eb447156f),
TO_LIMB_T(0xe52a2aee72c2a01f), TO_LIMB_T(0x089812fb8481ffe4) },
{ TO_LIMB_T(0x2574eb851eb8619f), TO_LIMB_T(0xdba2e97912925604),
TO_LIMB_T(0x67e495a909e7a18e), TO_LIMB_T(0xdf2da23b8145b8f7),
TO_LIMB_T(0xcf5d3728310ebf6d), TO_LIMB_T(0x11be446236f4c116) }
};
static const vec384x magic_ZZZ = { /* 1/Z^3 = a + b*i */
/* a^2 + b^2 */
{ TO_LIMB_T(0xaa7eb851eb8508e0), TO_LIMB_T(0x1c54fdf360989374),
TO_LIMB_T(0xc87f2fc6e716c62e), TO_LIMB_T(0x0124aefb1f9efea7),
TO_LIMB_T(0xb2f8be63e844865c), TO_LIMB_T(0x08b47f775a7ef35a) },
/* (a^2 + b^2)^((P-3)/4) */
{ TO_LIMB_T(0xe4132bbd838cf70a), TO_LIMB_T(0x01d769ac83772c19),
TO_LIMB_T(0xa83dd6e974c22e45), TO_LIMB_T(0xbc8ec3e777b08dff),
TO_LIMB_T(0xc035c2042ecf5da3), TO_LIMB_T(0x073929e97f0850bf) }
};
static const vec384x ZxA = { /* 240 - 480*i */
{ TO_LIMB_T(0xe53a000003135242), TO_LIMB_T(0x01080c0fdef80285),
TO_LIMB_T(0xe7889edbe340f6bd), TO_LIMB_T(0x0b51375126310601),
TO_LIMB_T(0x02d6985717c744ab), TO_LIMB_T(0x1220b4e979ea5467) },
{ TO_LIMB_T(0xa989fffff9d8b0d2), TO_LIMB_T(0x3b47e7dda4b7faf3),
TO_LIMB_T(0xff50678a26dffece), TO_LIMB_T(0xb24c28679aa8197a),
TO_LIMB_T(0x908a1ebe5708d058), TO_LIMB_T(0x0fc0ba017f2b2466) }
};
vec384x uu, tv2, tv4, x2n, gx1, gxd, y2;
#if 0
vec384x xn, x1n, xd, y, y1, Zuu;
#else
# define xn p->X
# define y p->Y
# define xd p->Z
# define x1n xn
# define y1 y
# define Zuu x2n
#endif
#define sgn0_fp2(a) (sgn0_pty_mont_384x((a), BLS12_381_P, p0) & 1)
bool_t e1, e2;
/*
* as per map_to_curve() from poc/sswu_opt.sage at
* https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
* with 9mod16 twists...
*/
/* x numerator variants */
sqr_fp2(uu, u); /* uu = u^2 */
mul_fp2(Zuu, Z, uu); /* Zuu = Z * uu */
sqr_fp2(tv2, Zuu); /* tv2 = Zuu^2 */
add_fp2(tv2, tv2, Zuu); /* tv2 = tv2 + Zuu */
add_fp2(x1n, tv2, BLS12_381_Rx.p2); /* x1n = tv2 + 1 */
mul_fp2(x1n, x1n, Bprime_E2); /* x1n = x1n * B */
mul_fp2(x2n, Zuu, x1n); /* x2n = Zuu * x1n */
/* x denumenator */
mul_fp2(xd, minus_A, tv2); /* xd = -A * tv2 */
e1 = vec_is_zero(xd, sizeof(xd)); /* e1 = xd == 0 */
vec_select(xd, ZxA, xd, sizeof(xd), e1); /* # If xd == 0, set xd = Z*A */
/* y numerators variants */
sqr_fp2(tv2, xd); /* tv2 = xd^2 */
mul_fp2(gxd, xd, tv2); /* gxd = xd^3 */
mul_fp2(tv2, Aprime_E2, tv2); /* tv2 = A * tv2 */
sqr_fp2(gx1, x1n); /* gx1 = x1n^2 */
add_fp2(gx1, gx1, tv2); /* gx1 = gx1 + tv2 # x1n^2 + A*xd^2 */
mul_fp2(gx1, gx1, x1n); /* gx1 = gx1 * x1n # x1n^3 + A*x1n*xd^2 */
mul_fp2(tv2, Bprime_E2, gxd); /* tv2 = B * gxd */
add_fp2(gx1, gx1, tv2); /* gx1 = gx1 + tv2 # x1^3 + A*x1*xd^2 + B*xd^3 */
sqr_fp2(tv4, gxd); /* tv4 = gxd^2 */
mul_fp2(tv2, gx1, gxd); /* tv2 = gx1 * gxd */
mul_fp2(tv4, tv4, tv2); /* tv4 = tv4 * tv2 # gx1*gxd^3 */
e2 = recip_sqrt_fp2(y1, tv4, /* y1 = tv4^c1 # (gx1*gxd^3)^((p^2-9)/16) */
recip_ZZZ, magic_ZZZ);
mul_fp2(y1, y1, tv2); /* y1 = y1 * tv2 # gx1*gxd*y1 */
mul_fp2(y2, y1, uu); /* y2 = y1 * uu */
mul_fp2(y2, y2, u); /* y2 = y2 * u */
/* choose numerators */
vec_select(xn, x1n, x2n, sizeof(xn), e2); /* xn = e2 ? x1n : x2n */
vec_select(y, y1, y2, sizeof(y), e2); /* y = e2 ? y1 : y2 */
e1 = sgn0_fp2(u);
e2 = sgn0_fp2(y);
cneg_fp2(y, y, e1^e2); /* fix sign of y */
/* return (xn, xd, y, 1) */
/* convert (xn, xd, y, 1) to Jacobian projective coordinates */
mul_fp2(p->X, xn, xd); /* X = xn * xd */
mul_fp2(p->Y, y, gxd); /* Y = y * xd^3 */
#ifndef xd
vec_copy(p->Z, xd, sizeof(xd)); /* Z = xd */
#else
# undef xn
# undef y
# undef xd
# undef x1n
# undef y1
# undef Zuu
# undef tv4
#endif
#undef sgn0_fp2
}
#if 0
static const byte h_eff[] = {
TO_BYTES(0xe8020005aaa95551), TO_BYTES(0x59894c0adebbf6b4),
TO_BYTES(0xe954cbc06689f6a3), TO_BYTES(0x2ec0ec69d7477c1a),
TO_BYTES(0x6d82bf015d1212b0), TO_BYTES(0x329c2f178731db95),
TO_BYTES(0x9986ff031508ffe1), TO_BYTES(0x88e2a8e9145ad768),
TO_BYTES(0x584c6a0ea91b3528), TO_BYTES(0x0bc69f08f2ee75b3)
};
static void clear_cofactor(POINTonE2 *out, const POINTonE2 *p)
{ POINTonE2_mult_w5(out, p, h_eff, 636); }
#else
/*
* As per suggestions in "7. Clearing the cofactor" at
* https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
*/
static void POINTonE2_add_n_dbl(POINTonE2 *out, const POINTonE2 *p, size_t n)
{
POINTonE2_dadd(out, out, p, NULL);
while(n--)
POINTonE2_double(out, out);
}
static void POINTonE2_times_minus_z(POINTonE2 *out, const POINTonE2 *in)
{
POINTonE2_double(out, in); /* 1: 0x2 */
POINTonE2_add_n_dbl(out, in, 2); /* 2..4: 0x3..0xc */
POINTonE2_add_n_dbl(out, in, 3); /* 5..8: 0xd..0x68 */
POINTonE2_add_n_dbl(out, in, 9); /* 9..18: 0x69..0xd200 */
POINTonE2_add_n_dbl(out, in, 32); /* 19..51: ..0xd20100000000 */
POINTonE2_add_n_dbl(out, in, 16); /* 52..68: ..0xd201000000010000 */
}
static void psi(POINTonE2 *out, const POINTonE2 *in);
static void clear_cofactor(POINTonE2 *out, const POINTonE2 *p)
{
POINTonE2 t0, t1;
/* A.Budroni, F.Pintore, "Efficient hash maps to G2 on BLS curves" */
POINTonE2_double(out, p); /* out = 2P */
psi(out, out); /* out = Ψ(2P) */
psi(out, out); /* out = Ψ²(2P) */
vec_copy(&t0, p, sizeof(t0));
POINTonE2_cneg(&t0, 1); /* t0 = -P */
psi(&t1, &t0); /* t1 = -Ψ(P) */
POINTonE2_dadd(out, out, &t0, NULL);/* out = Ψ²(2P) - P */
POINTonE2_dadd(out, out, &t1, NULL);/* out = Ψ²(2P) - P - Ψ(P) */
POINTonE2_times_minus_z(&t0, p); /* t0 = [-z]P */
POINTonE2_dadd(&t0, &t0, p, NULL); /* t0 = [-z + 1]P */
POINTonE2_dadd(&t0, &t0, &t1, NULL);/* t0 = [-z + 1]P - Ψ(P) */
POINTonE2_times_minus_z(&t1, &t0); /* t1 = [z² - z]P + [z]Ψ(P) */
POINTonE2_dadd(out, out, &t1, NULL);/* out = [z² - z - 1]P */
/* + [z - 1]Ψ(P) */
/* + Ψ²(2P) */
}
#endif
/*
* |u|, |v| are expected to be in Montgomery representation
*/
static void map_to_g2(POINTonE2 *out, const vec384x u, const vec384x v)
{
POINTonE2 p;
map_to_isogenous_E2(&p, u);
if (v != NULL) {
map_to_isogenous_E2(out, v); /* borrow |out| */
POINTonE2_dadd(&p, &p, out, Aprime_E2);
}
isogeny_map_to_E2(&p, &p); /* sprinkle isogenous powder */
clear_cofactor(out, &p);
}
void blst_map_to_g2(POINTonE2 *out, const vec384x u, const vec384x v)
{ map_to_g2(out, u, v); }
static void Encode_to_G2(POINTonE2 *p, const unsigned char *msg, size_t msg_len,
const unsigned char *DST, size_t DST_len,
const unsigned char *aug, size_t aug_len)
{
vec384x u[1];
hash_to_field(u[0], 2, aug, aug_len, msg, msg_len, DST, DST_len);
map_to_g2(p, u[0], NULL);
}
void blst_encode_to_g2(POINTonE2 *p, const unsigned char *msg, size_t msg_len,
const unsigned char *DST, size_t DST_len,
const unsigned char *aug, size_t aug_len)
{ Encode_to_G2(p, msg, msg_len, DST, DST_len, aug, aug_len); }
static void Hash_to_G2(POINTonE2 *p, const unsigned char *msg, size_t msg_len,
const unsigned char *DST, size_t DST_len,
const unsigned char *aug, size_t aug_len)
{
vec384x u[2];
hash_to_field(u[0], 4, aug, aug_len, msg, msg_len, DST, DST_len);
map_to_g2(p, u[0], u[1]);
}
void blst_hash_to_g2(POINTonE2 *p, const unsigned char *msg, size_t msg_len,
const unsigned char *DST, size_t DST_len,
const unsigned char *aug, size_t aug_len)
{ Hash_to_G2(p, msg, msg_len, DST, DST_len, aug, aug_len); }
static bool_t POINTonE2_in_G2(const POINTonE2 *P)
{
#if 0
POINTonE2 t0, t1, t2;
/* Bowe, S., "Faster subgroup checks for BLS12-381" */
psi(&t0, P); /* Ψ(P) */
psi(&t0, &t0); /* Ψ²(P) */
psi(&t1, &t0); /* Ψ³(P) */
POINTonE2_times_minus_z(&t2, &t1);
POINTonE2_dadd(&t0, &t0, &t2, NULL);
POINTonE2_cneg(&t0, 1);
POINTonE2_dadd(&t0, &t0, P, NULL); /* [z]Ψ³(P) - Ψ²(P) + P */
return vec_is_zero(t0.Z, sizeof(t0.Z));
#else
POINTonE2 t0, t1;
/* Scott, M., https://eprint.iacr.org/2021/1130 */
psi(&t0, P); /* Ψ(P) */
POINTonE2_times_minus_z(&t1, P);
POINTonE2_cneg(&t1, 1); /* [z]P */
return POINTonE2_is_equal(&t0, &t1);
#endif
}
int blst_p2_in_g2(const POINTonE2 *p)
{ return (int)POINTonE2_in_G2(p); }
int blst_p2_affine_in_g2(const POINTonE2_affine *p)
{
POINTonE2 P;
vec_copy(P.X, p->X, 2*sizeof(P.X));
vec_select(P.Z, p->X, BLS12_381_Rx.p, sizeof(P.Z),
vec_is_zero(p, sizeof(*p)));
return (int)POINTonE2_in_G2(&P);
}