-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
517 lines (461 loc) · 15.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#include "pointmatcher/PointMatcher.h"
#include <cassert>
#include <iostream>
#include <fstream>
#include <time.h>
#include <map>
#include <octomap/octomap.h>
#include <octomap/OcTree.h>
#include <octomap/ColorOcTree.h>
#include "icp.h"
#include "dbscan/dbscan.h"
#include "ransac/ransac.h"
#include <pcl/visualization/common/common.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/segmentation/extract_clusters.h>
// #include "tracking/TrackManager.h"
using namespace std;
using namespace octomap;
using namespace Eigen;
#define MAX_RANGE 10
#define GROUND_HEIGHT -0.7
#define CEIL_HEIGHT 1
// #define MAX_RANGE 30
// #define GROUND_HEIGHT -0.2
// #define CEIL_HEIGHT 100
typedef PointMatcher<float>::TransformationParameters TransformMatrix;
typedef std::map<int, Pointcloud> MAP;
typedef std::pair<int, Pointcloud> PAIR;
vector<point3d> LidarCenter;
vector<point3d> depthpics;
// global
TransformMatrix TransAcc; // accumulated transform matrix
int total, progress; // for display progress
// TrackManager trackManager;
class CSVRow
{
public:
string const& operator[](size_t index) const
{
return m_data[index];
}
size_t size() const
{
return m_data.size();
}
void readNextRow(istream& str)
{
string line;
getline(str,line);
stringstream lineStream(line);
string cell;
m_data.clear();
while(getline(lineStream,cell,','))
{
m_data.push_back(cell);
}
}
private:
vector<string> m_data;
};
istream& operator>>(istream& str,CSVRow& data)
{
data.readNextRow(str);
return str;
}
/**
* read pointcloud from a csvfile
* @param filename [description]
* @return [description]
*/
Pointcloud readPointCloud(const char* filename) {
Pointcloud Q;
ifstream in(filename);
CSVRow row;
while(in >> row)
{
float x, y, z;
x = atof(row[0].c_str());
y = atof(row[1].c_str());
z = atof(row[2].c_str());
Q.push_back(x, y, z);
}
return Q;
}
void extractGround(Pointcloud P, Pointcloud & ground, Pointcloud &nonGround) {
point3d upper, lower;
P.calcBBX(lower, upper);
// cout << "lower: " << lower << endl;
// cout << "upper: " << upper << endl;
point3d ground_upper(upper.x(), upper.y(), lower.z() + 1);
point3d ground_lower(lower.x(), lower.y(), GROUND_HEIGHT);
// remove ceiling
upper = point3d(upper.x(), upper.y(), CEIL_HEIGHT);
ground.push_back(P);
nonGround.push_back(P);
ground.crop(lower, ground_upper);
nonGround.crop(ground_lower, upper);
}
Pointcloud limitXY(Pointcloud P, float max) {
point3d upper, lower;
P.calcBBX(lower, upper);
upper = point3d(max, max, upper.z());
lower = point3d(-max, -max, lower.z());
Pointcloud result;
result.push_back(P);
result.crop(lower, upper);
return result;
}
void getClusterFeatures(Pointcloud cluster, point3d ¢roid, point3d & boxSize, point3d &ClusterCenter) {
int size = cluster.size();
// calc centroid
float x = 0, y = 0, z = 0;
for (int i = 0; i < size; i++) {
x += cluster[i].x();
y += cluster[i].y();
z += cluster[i].z();
}
centroid = point3d(x/size, y/size, z/size);
// calc boxSize
point3d upper, lower;
cluster.calcBBX(lower, upper);
boxSize = point3d(upper.x() - lower.x(), upper.y() - lower.y(), upper.z() - lower.z());
ClusterCenter = point3d((upper.x()+lower.x())/2, (upper.y()+lower.y())/2, (upper.z()+lower.z())/2);
}
void getInAndOutliners(Pointcloud P, bool * cs, Pointcloud &inliners, Pointcloud &outliners) {
inliners.clear();
outliners.clear();
int size = P.size();
int count = 0;
for (int i = 0; i < size; i++) {
if (cs[i]) {
inliners.push_back(P[i]);
} else {
outliners.push_back(P[i]);
count++;
}
}
}
void octree2pcl(Pointcloud tree){
// unsigned int maxDepth = tree.getTreeDepth();
// cout << "tree depth is " << maxDepth << endl;
// expand collapsed occupied nodes until all occupied leaves are at maximum depth
vector<point3d> pcl;
for (Pointcloud::iterator it = tree.begin(); it != tree.end(); ++it)
{
pcl.push_back(*it);
}
string outputFilename = "outliners.pcd";
ofstream f(outputFilename.c_str(), ofstream::out);
f << "# .PCD v0.7" << endl
<< "VERSION 0.7" << endl
<< "FIELDS x y z" << endl
<< "SIZE 4 4 4" << endl
<< "TYPE F F F" << endl
<< "COUNT 1 1 1" << endl
<< "WIDTH " << pcl.size() << endl
<< "HEIGHT 1" << endl
<< "VIEWPOINT 0 0 0 0 0 0 1" << endl
<< "POINTS " << pcl.size() << endl
<< "DATA ascii" << endl;
for (size_t i = 0; i < pcl.size(); i++)
f << pcl[i].x() << " " << pcl[i].y() << " " << pcl[i].z() << endl;
f.close();
}
// pcl EduclideanClusterExtraction method
// void cluster_extraction(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud){
// pcl::PCDWriter writer;
// // Creating the KdTree object for the search method of the extraction
// pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
// tree->setInputCloud (cloud);
// std::vector<pcl::PointIndices> cluster_indices;
// pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
// ec.setClusterTolerance (0.07); //7cm
// ec.setMinClusterSize (5);
// ec.setMaxClusterSize (1000);
// ec.setSearchMethod (tree);
// ec.setInputCloud (cloud);
// ec.extract (cluster_indices);
// int j = 0;
// for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
// {
// pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
// for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
// cloud_cluster->points.push_back (cloud->points[*pit]); //*
// cloud_cluster->width = cloud_cluster->points.size ();
// cloud_cluster->height = 1;
// cloud_cluster->is_dense = true;
// std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
// std::stringstream ss;
// ss << "cloud_cluster_" << j << ".pcd";
// writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
// j++;
// }
// }
void deleteCrop(Pointcloud &input, point3d lowerBound, point3d upperBound) {
Pointcloud result;
float min_x, min_y, min_z;
float max_x, max_y, max_z;
float x,y,z;
min_x = lowerBound(0); min_y = lowerBound(1); min_z = lowerBound(2);
max_x = upperBound(0); max_y = upperBound(1); max_z = upperBound(2);
for (Pointcloud::const_iterator it=input.begin(); it!=input.end(); it++) {
x = (*it).x();
y = (*it).y();
z = (*it).z();
if ((x >= min_x) &&
(y >= min_y) &&
(z >= min_z) &&
(x <= max_x) &&
(y <= max_y) &&
(z <= max_z)){
}
else{
result.push_back (x,y,z);
}
}
input.clear();
input.push_back(result);
}
// DBSCAN Cluster Extraction
void cluster_extraction(Pointcloud dcs, ColorOcTree tree, MAP &movingObjs, TransformMatrix TransAcc, std::vector<MAP> &DynamicObjects, Pointcloud &stationary){
int size = dcs.size();
int * clusters_idxs = new int[size];
clusters_idxs = dbscan(dcs, 10, 0.5);//min_points and epsilon
MAP clusterMap;
for(int i=0; i<size; i++){
int cluster_idx = clusters_idxs[i];
MAP::iterator it = clusterMap.find(cluster_idx);
float x = dcs[i].x();
float y = dcs[i].y();
float z = dcs[i].z();
if (it != clusterMap.end()) {
(it->second).push_back(point3d(x, y, z));
} else {
Pointcloud v;
v.push_back(point3d(x, y, z));
clusterMap.insert(PAIR(cluster_idx, v));
}
}
cout<<"Cluster Size: "<<clusterMap.size()<<endl;
pcl::PCDWriter writer;
int exist = 0, movingObjs_index=0;
float score = 0;
for (MAP::iterator it = clusterMap.begin() ; it != clusterMap.end(); it++) {
Pointcloud cluster = it->second;
Pointcloud tmp(stationary);
point3d lowerBound, upperBound;
cluster.calcBBX(lowerBound, upperBound);
point3d ex(0.3, 0.3, 0.3);
// point3d ex(0.1, 0.1, 0.1);
lowerBound -= ex;
upperBound += ex;
tmp.crop(lowerBound, upperBound);
cluster.clear();
for(Pointcloud::iterator it = tmp.begin(); it != tmp.end(); it++)
{
cluster.push_back(*it);
}
int cluster_idx = it->first;
exist = 0;
// compare to total map to remove some not interest cluster
for(Pointcloud::iterator it = cluster.begin(); it != cluster.end(); it++)
{
OcTreeNode* n = tree.search((*it));
if(!n){
exist++;
}
}
score = exist/cluster.size();
if( cluster_idx != 0 && score>0.5 && cluster.size()>50)
{
movingObjs.insert(PAIR(movingObjs_index,cluster));
point3d temp;
temp.x() = TransAcc(0, 3);
temp.y() = TransAcc(1, 3);
temp.z() = TransAcc(2, 3);
LidarCenter.push_back(temp);
pcl::PointCloud<pcl::PointXYZ> cloud;
cloud.width = cluster.size() +1;
cloud.height = 1;
cloud.is_dense = false;
cloud.points.resize (cloud.width * cloud.height);
// Lidar Center
cloud.points[0].x = temp.x();
cloud.points[0].y = temp.y();
cloud.points[0].z = temp.z();
int j = 1;
for (Pointcloud::iterator it = cluster.begin(); it != cluster.end(); ++it)
{
// cloud.points[j].x = (*it).x() - temp.x();
// cloud.points[j].y = -((*it).z() - temp.z());
// cloud.points[j].z = (*it).y() - temp.y();
cloud.points[j].x = (*it).x();
cloud.points[j].y = (*it).y();
cloud.points[j].z = (*it).z();
j++;
}
std::stringstream ss;
ss << "cloud_cluster_" << DynamicObjects.size() << "_" << movingObjs_index << ".pcd";
string outputFilename;
ss >> outputFilename;
pcl::io::savePCDFileBinary(outputFilename, cloud);
movingObjs_index++;
deleteCrop(stationary, lowerBound, upperBound);
}
}
DynamicObjects.push_back(movingObjs);
// octree2pcl(stationary);
}
void transform2TSDF(Pointcloud dynObj, point3d LidarCenter,vector<point3d> &depthpics){
point3d center, boxSize, centroid, normal, v, dynPoint, projection, projectionCenter, temp;
depthpics.clear();
getClusterFeatures(dynObj, centroid, boxSize, center) ;
normal.x() = center.x() - LidarCenter.x();
normal.y() = center.y() - LidarCenter.y();
normal.z() = center.z() - LidarCenter.z();
float total = sqrt(pow((normal.x()), 2) + pow((normal.y()),2) + pow((normal.z()), 2));
normal.x() = normal.x()/total;
normal.y() = normal.y()/total;
normal.z() = normal.z()/total;
for (Pointcloud::iterator it = dynObj.begin(); it != dynObj.end(); it++) {
dynPoint.x() = (*it).x();
dynPoint.y() = (*it).y();
dynPoint.z() = (*it).z();
v.x() = dynPoint.x() - LidarCenter.x();
v.y() = dynPoint.y() - LidarCenter.y();
v.z() = dynPoint.z() - LidarCenter.z();
float depth = normal.dot(v);
projection.x() = (0.2*LidarCenter.x()+depth*dynPoint.x())/(0.2+depth);
projection.y() = (0.2*LidarCenter.y()+depth*dynPoint.y())/(0.2+depth);
// projection.z() = (0.2*LidarCenter.z()+depth*dynPoint.z())/(0.2+depth);
total = sqrt(pow((center.x()-LidarCenter.x()), 2) + pow((center.y()-LidarCenter.y()),2) + pow((center.z()-LidarCenter.z()), 2));
projectionCenter.x() = 0.2*(center.x()-LidarCenter.x())/total+LidarCenter.x();
projectionCenter.y() = 0.2*(center.y()-LidarCenter.y())/total+LidarCenter.y();
// projectionCenter.z() = 0.2*(center.z()-LidarCenter.z())/total+LidarCenter.z();
temp.x() = projection.x() - projectionCenter.x();
temp.y() = projection.y() - projectionCenter.y();
temp.z() = depth;
depthpics.push_back(temp);
}
}
void initMap(ColorOcTree &tree, Pointcloud P) {
Pointcloud ground, PWithOutGround;
extractGround(P, ground, PWithOutGround);
P = PWithOutGround;
P = limitXY(P, MAX_RANGE);
for (Pointcloud::iterator it = P.begin(); it != P.end(); it++) {
tree.updateNode((*it).x(), (*it).y(), (*it).z(), true);
tree.setNodeColor((*it).x(), (*it).y(), (*it).z(), 0, 0, 255);
}
}
Pointcloud updateMap(ColorOcTree &tree, Pointcloud P, Pointcloud lastP, std::vector<Pointcloud> &dcs, std::vector<MAP> &DynamicObjects) {
long beginTime = clock();
Pointcloud ground, PWithOutGround, P_, inliners1, outliners1, inliners2, outliners2, previousOutliners, dynObj;
dynObj.clear();
// icp and dynamic dectction should be implemented without ground points
extractGround(P, ground, PWithOutGround);
P = PWithOutGround;
P = limitXY(P, MAX_RANGE);
bool * cs = new bool[P.size()];
bool *cs2= new bool[lastP.size()];
P = icp(lastP, P, TransAcc, cs, cs2);
getInAndOutliners(P, cs, inliners1, outliners1);
// dynamic detection
MAP movingObjs;
dcs.push_back(outliners1);
// if(dcs.size()>=1)
// {
previousOutliners = dcs[0];
dcs.erase(dcs.begin());
cluster_extraction(previousOutliners, tree, movingObjs, TransAcc, DynamicObjects, P);
// }
for(int i=0;i<P.size();i++)
{
P_.push_back(P[i]);
}
cout<<"P_:"<<P_.size()<<endl;
// add points
for (Pointcloud::iterator it = P_.begin(); it != P_.end(); it++) {
tree.updateNode((*it), true);
tree.setNodeColor((*it).x(), (*it).y(), (*it).z(), 0, 0, 255);
}
//free points update
// mark and clear dynamic points
for (int i = 0; i < movingObjs.size(); i++) {
dynObj = movingObjs[i];
// transform2TSDF(dynObj, LidarCenter, depthpics);
for (Pointcloud::iterator it = dynObj.begin(); it != dynObj.end(); it++) {
ColorOcTreeNode* node = tree.updateNode((*it), false);
node->setLogOdds(-0.4);
// ColorOcTreeNode* n = tree.updateNode((*it), true);
// n->setColor(255,0,0); // set color to red
}
}
tree.setNodeColor(TransAcc(0, 3), TransAcc(1, 3), TransAcc(2, 3), 155, 100, 255); // lidar current pos
long endTime = clock();
char msg[100];
sprintf(msg, "frame %d/%d completed, consumed time: %.2f s.\n", progress, total, (float)(endTime-beginTime)/1000000);
cout << msg;
octree2pcl(P);
delete[] cs;
delete[] cs2;
return P;
}
void viewerOneOff (pcl::visualization::PCLVisualizer& viewer)
{
// set background to black (R = 0, G = 0, B = 0)
viewer.setBackgroundColor (0, 0, 0);
}
void viewerPsycho (pcl::visualization::PCLVisualizer& viewer)
{
// you can add something here, ex: add text in viewer
}
int main(int argc, char** argv) {
ColorOcTree tree (0.05); // create empty tree with resolution 0.1
int from = atoi(argv[1]);
int to = atoi(argv[2]);
int step = atoi(argv[3]);
string path = argv[4];
std::vector<Pointcloud> dcs;//Dynamic Objects Candidates
std::vector<MAP> DynamicObjects;
// pcl visualization
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
// ptr transform
pcl::visualization::CloudViewer viewer("Cloud Viewer");
viewer.runOnVisualizationThreadOnce(viewerOneOff);
viewer.runOnVisualizationThreadOnce(viewerPsycho);
// init
char baseFile[50];
sprintf(baseFile, "%s (Frame %04d).csv", path.c_str(), from);
Pointcloud base = readPointCloud(baseFile);
initMap(tree, base);
TransAcc.resize(4, 4);
TransAcc.setIdentity();
total = (int) (to - from) / step;
progress = 1;
Pointcloud P, lastP;
lastP = base;
char file[50];
for (int i = from + 1; i <= to; i += step) {
sprintf(file, "%s (Frame %04d).csv", path.c_str(), i);
P = readPointCloud(file);
lastP = updateMap(tree, P, lastP, dcs, DynamicObjects);
progress++;
pcl::io::loadPCDFile("outliners.pcd", *cloud);
viewer.showCloud(cloud);
}
// trackManager.saveTargets();
// string result = "map.bt";
// tree.writeBinary(result);
string result = "map.ot";
tree.write(result);
cout << "wrote example file " << result << endl;
while(! viewer.wasStopped())
{
}
return 0;
}