-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
581 lines (500 loc) · 26.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import sys
import os
import numpy as np
import keras.backend as K
from keras.models import Model
from keras.layers import Input,merge
from keras.layers.merge import _Merge
from keras import initializers
from keras.initializers import RandomNormal
from keras.utils import vis_utils
from keras.layers.advanced_activations import LeakyReLU, ELU
from keras.activations import linear
from keras.layers.normalization import BatchNormalization
from keras.layers.core import Flatten, Dense, Activation, Reshape, Lambda, Dropout
from keras.layers.convolutional import Conv2D, Convolution2D, UpSampling2D, MaxPooling2D, Conv2DTranspose
from keras.layers.pooling import AveragePooling2D, GlobalAveragePooling2D
from keras.layers.noise import GaussianNoise
from keras.regularizers import *
from keras.applications.vgg16 import VGG16
from keras.constraints import unitnorm
from functools import partial
import tensorflow as tf
from normalization import *
import resnet50
def make_trainable(net, value):
net.trainable = value
for l in net.layers:
l.trainable = value
def wasserstein(y_true, y_pred):
return K.mean(y_true * y_pred)
def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight):
gradients = K.gradients(y_pred, averaged_samples)
gradients = K.concatenate([K.flatten(tensor) for tensor in gradients])
gradient_l2_norm = K.sqrt(K.sum(K.square(gradients)))
gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm)
return K.mean(y_pred) - K.mean(y_pred) + gradient_penalty
def visualize_model(model):
model.summary()
vis_utils.plot_model(model,
to_file='./figures/%s.png' % model.name,
show_shapes=True,
show_layer_names=True)
def generator_google_mnistM(noise_dim, img_source_dim,img_dest_dim,deterministic,pureGAN,wd,suffix=None):
"""DCGAN generator based on Upsampling and Conv2D
Args:
noise_dim: Dimension of the noise input
img_dim: dimension of the image output
bn_mode: keras batchnorm mode
model_name: model name (default: {"generator_upsampling"})
dset: dataset (default: {"mnist"})
Returns:
keras model
"""
s = img_source_dim[1]
# shp = np.expand_dims(img_dim[1:],1) # to make shp= (None, 1, 28, 28) but is not working
start_dim = int(s / 4)
if K.image_dim_ordering() == "th":
input_channels = img_source_dim[0]
output_channels = img_dest_dim[0]
reshape_shape = (input_channels, s, s)
shp=reshape_shape
else:
input_channels = img_source_dim[-1]
output_channels = img_dest_dim[-1]
reshape_shape = (s, s, input_channels)
shp=reshape_shape
gen_noise_input = Input(shape=noise_dim, name="generator_input")
gen_image_input = Input(shape=shp, name="generator_image_input")
# Noise input and reshaping
x = Dense(5*s*s, input_dim=noise_dim,W_regularizer=l2(wd))(gen_noise_input)
x = Reshape((5,s,s))(x)
x = Activation("relu")(x)
if deterministic: #here I link or not link the noise vector to the whole network
g = gen_image_input
elif pureGAN:
g = x
else:
g = merge([gen_image_input, x], mode='concat',concat_axis=1) # because of concat_axis=1, will it work on tensorflow NHWC too?
x1 = Conv2D(64, (3, 3), border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(g) #convolved by 3x3 filter to get 64x55x35
x1 = Activation('relu')(x1)
for i in range(4):
x = Conv2D(64, (3, 3), border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(x1)
x=BatchNormGAN(axis=1)(x)
x = Activation('relu')(x)
x = Conv2D(64, (3, 3), border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(x)
x=BatchNormGAN(axis=1)(x)
x1 = merge([x, x1], mode='sum')
x1 = Activation('relu')(x1)
# Last Conv to get the output image
x1 = Conv2D(output_channels, (1, 1),name="gen_conv2d_final", border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(x1)
x1 = Activation('tanh')(x1)
if suffix is None:
generator_model = Model(input=[gen_noise_input,gen_image_input], output=[x1], name="generator_google1")
else:
generator_model = Model(input=[gen_noise_input,gen_image_input], output=[x1], name="generator_google2")
visualize_model(generator_model)
return generator_model
def generator_2048x7x7(noise_dim, img_source_dim,img_dest_dim,deterministic,pureGAN,wd,suffix=None):
"""DCGAN generator based on Upsampling and Conv2D
Args:
noise_dim: Dimension of the noise input
img_dim: dimension of the image output
bn_mode: keras batchnorm mode
model_name: model name (default: {"generator_upsampling"})
dset: dataset (default: {"mnist"})
Returns:
keras model
"""
s = img_source_dim[1]
# shp = np.expand_dims(img_dim[1:],1) # to make shp= (None, 1, 28, 28) but is not working
start_dim = int(s / 4)
if K.image_dim_ordering() == "th":
input_channels = img_source_dim[0]
output_channels = img_dest_dim[0]
reshape_shape = (input_channels, s, s)
shp=reshape_shape
else:
input_channels = img_source_dim[-1]
output_channels = img_dest_dim[-1]
reshape_shape = (s, s, input_channels)
shp=reshape_shape
gen_noise_input = Input(shape=noise_dim, name="generator_input")
gen_image_input = Input(shape=shp, name="generator_image_input")
# Noise input and reshaping
x = Dense(256*s*s, input_dim=noise_dim,W_regularizer=l2(wd))(gen_noise_input)
x = Reshape((256,s,s))(x)
x = Activation("relu")(x)
if deterministic: #here I link or not link the noise vector to the whole network
g = gen_image_input
elif pureGAN:
g = x
else:
g = merge([gen_image_input, x], mode='concat',concat_axis=1) # because of concat_axis=1, will it work on tensorflow NHWC too?
x1 = Conv2D(128, (7, 7),strides=(1,1), border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(g) #convolved by 3x3 filter to get 64x55x35
x1 = Activation('relu')(x1)
x1 = BatchNormGAN(axis=1)(x1)
x1 = Conv2D(2048, (7, 7),strides=(1,1), border_mode='same', kernel_initializer="he_normal",W_regularizer=l2(wd))(x1) #convolved by 3x3 filter to get 64x55x35
if suffix is None:
generator_model = Model(input=[gen_noise_input,gen_image_input], output=[x1], name="generator_google1")
else:
generator_model = Model(input=[gen_noise_input,gen_image_input], output=[x1], name="generator_google2")
visualize_model(generator_model)
return generator_model
def discriminator_google_mnistM(img_dim,wd):
disc_input = Input(shape=img_dim, name="discriminator_input")
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv1",border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(disc_input)
x=BatchNormGAN(axis=1)(x)
x = Dropout(0.1)(x)
x = LeakyReLU(0.2)(x)
x = GaussianNoise( sigma=0.2 )(x)
x = Conv2D(128, (3, 3), strides=(2, 2), name="conv2",border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x = Dropout(0.2)(x)
# x = LeakyReLU(0.2)(x)
x = GaussianNoise( sigma=0.2 )(x)
x = Conv2D(256, (3, 3), strides=(2, 2), name="conv3",border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x=BatchNormGAN(axis=1)(x)
x = Dropout(0.2)(x)
x = LeakyReLU(0.2)(x)
x = GaussianNoise( sigma=0.2 )(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name="conv4",border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x = Dropout(0.2)(x)
# x = LeakyReLU(0.2)(x)
x = GaussianNoise( sigma=0.2 )(x)
x = Flatten()(x)
x = Dense(1, init=RandomNormal(stddev=0.02),activation='sigmoid', name='fc',W_regularizer=l2(wd))(x)
discriminator_model = Model(input=[disc_input], output=x, name="discriminator_google")
visualize_model(discriminator_model)
return discriminator_model
def discriminator_2048x7x7(img_dim,wd,n_classes,disc_type):
disc_input = Input(shape=img_dim, name="discriminator_input")
x = Conv2D(128, (7, 7), strides=(1, 1), name="conv1",border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(disc_input)
x=BatchNormGAN(axis=1)(x)
x = Dropout(0.1)(x)
x = LeakyReLU(0.2)(x)
x = GaussianNoise( sigma=0.2 )(x)
aux = x
x = Conv2D(1, (3, 3), strides=(1, 1), name="finale_conv",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
aux = Flatten()(aux)
aux = Dense(n_classes, activation='softmax', name='auxiliary',W_regularizer=l2(wd))(aux)
x = GlobalAveragePooling2D()(x)
discriminator_model_domain = Model(input=[disc_input], output=[x], name="discriminator_domain")
discriminator_model_class = Model(input=[disc_input], output=[aux], name="discriminator_class")
visualize_model(discriminator_model_domain)
visualize_model(discriminator_model_class)
return discriminator_model_domain, discriminator_model_class
def discriminator_dcgan(img_dim,wd,n_classes,disc_type):
min_s = img_dim[1]
disc_input = Input(shape=img_dim, name="discriminator_input")
# Get the list of number of conv filters
# (first layer starts with 64), filters are subsequently doubled
nb_conv =int(np.floor(np.log(min_s // 4) / np.log(2)))
list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv)]
x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(disc_input)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
for i, f in enumerate(list_f[1:]):
name = "disc_conv2d_%s" % (i + 2)
x = Conv2D(f, (3, 3), strides=(2, 2), name=name,
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
x = Conv2D(1, (3, 3), strides=(1, 1), name="finale_conv",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
if disc_type == "nclass_disc":
aux = Flatten()(x)
aux = Dense(n_classes, activation='softmax', name='auxiliary',W_regularizer=l2(wd))(aux)
x = GlobalAveragePooling2D()(x)
discriminator_model = Model(input=[disc_input], output=[x,aux], name="discriminator")
elif disc_type == "simple_disc":
x = GlobalAveragePooling2D()(x)
discriminator_model = Model(input=[disc_input], output=[x], name="discriminator")
else:
print "ERROR, UNKNOWN DISCRIMINATOR"
visualize_model(discriminator_model)
return discriminator_model
def discriminator_dcgan_doubled(img_dim,wd,n_classes,disc_type):
min_s = img_dim[1]
disc_input = Input(shape=img_dim, name="discriminator_input")
# Get the list of number of conv filters
# (first layer starts with 64), filters are subsequently doubled
nb_conv =int(np.floor(np.log(min_s // 4) / np.log(2)))
list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv)]
x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(disc_input)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
for i, f in enumerate(list_f[1:]):
name = "disc_conv2d_%s" % (i + 2)
x = Conv2D(f, (3, 3), strides=(2, 2), name=name,
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
aux = x
x = Conv2D(1, (3, 3), strides=(1, 1), name="finale_conv",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
aux = Flatten()(aux)
aux = Dense(n_classes, activation='softmax', name='auxiliary',W_regularizer=l2(wd))(aux)
x = GlobalAveragePooling2D()(x)
discriminator_model_domain = Model(input=[disc_input], output=[x], name="discriminator_domain")
discriminator_model_class = Model(input=[disc_input], output=[aux], name="discriminator_class")
visualize_model(discriminator_model_domain)
visualize_model(discriminator_model_class)
return discriminator_model_domain, discriminator_model_class
def discriminator_custom(img_dim,wd):
min_s = img_dim[1]
disc_input = Input(shape=img_dim, name="discriminator_input")
# Get the list of number of conv filters
# (first layer starts with 64), filters are subsequently doubled
nb_conv =int(np.floor(np.log(min_s // 4) / np.log(2)))
list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv+1)]
x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1",
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(disc_input)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
for i, f in enumerate(list_f[1:]):
name = "disc_conv2d_%s" % (i + 2)
x = Conv2D(f, (3, 3), strides=(2, 2), name=name,
border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
x=BatchNormalization(axis=1)(x)
x = LeakyReLU(0.2)(x)
#x = Conv2D(1, (3, 3), strides=(1, 1), name="finale_conv",
# border_mode="same", kernel_initializer=RandomNormal(stddev=0.02),kernel_regularizer=l2(wd))(x)
#x = GlobalAveragePooling2D()(x)
x = Dense(1, init=RandomNormal(stddev=0.02), name='fc',W_regularizer=l2(wd))(x)
discriminator_model = Model(input=[disc_input], output=x, name="discriminator")
visualize_model(discriminator_model)
return discriminator_model
def classificator_google_mnistM(img_dim,n_classes,wd):
input = Input(shape=img_dim, name="classifier_input")
x = Conv2D(32, (5, 5), strides=(1, 1), name="conv1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(input)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Conv2D(48, (5, 5), strides=(1, 1), name="conv2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Flatten()(x)
x = Dense(100, init="he_normal",activation="relu", name='fc1',W_regularizer=l2(wd))(x)
x = Dense(100, init="he_normal",activation="relu", name='fc2',W_regularizer=l2(wd))(x)
x = Dense(n_classes, init="he_normal",activation="softmax", name='fc_softmax',W_regularizer=l2(wd))(x)
classifier_model = Model(input=input,output=x,name="classifier")
visualize_model(classifier_model)
return classifier_model
def classificator_signs_relu(img_dim,n_classes,wd):
input = Input(shape=img_dim, name="classifier_input")
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(input)
x = Activation('relu')(x)
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Flatten()(x)
x = Dense(128, init="he_normal",activation="relu", name='fc1',W_regularizer=l2(wd))(x)
x = Dense(n_classes, init="he_normal",activation="softmax", name='fc_softmax',W_regularizer=l2(wd))(x)
classifier_model = Model(input=input,output=x,name="classifier")
visualize_model(classifier_model)
return classifier_model
def classificator_signs(img_dim,n_classes,wd):
input = Input(shape=img_dim, name="classifier_input")
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(input)
x = ELU()(x)
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = Conv2D(32, (3, 3), strides=(1, 1), name="conv1_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = Conv2D(64, (3, 3), strides=(1, 1), name="conv2_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_1",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_2",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = Conv2D(128, (3, 3), strides=(1, 1), name="conv3_3",border_mode="same", kernel_initializer="he_normal",kernel_regularizer=l2(wd))(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2))(x)
x = Flatten()(x)
x = Dense(128, init="he_normal",activation="relu", name='fc1',W_regularizer=l2(wd))(x)
x = Dense(n_classes, init="he_normal",activation="softmax", name='fc_softmax',W_regularizer=l2(wd))(x)
classifier_model = Model(input=input,output=x,name="classifier")
visualize_model(classifier_model)
return classifier_model
def resnet50classifier(img_dim,n_classes,wd):
drop=0.5
model_name="resnet"
_input = Input(shape=img_dim, name="classificator_input")
ResNet = resnet50.ResNet50(_input,Shape=img_dim,weights='imagenet')
make_trainable(ResNet, False)
x = Dropout(drop)(ResNet.output)
out = Dense(n_classes, activation='softmax',init="he_normal", name='fc',W_regularizer=l2(wd))(x)
resnet_model = Model(input=_input, output=out, name=model_name)
visualize_model(resnet_model)
return resnet_model
def classificator_2048x7x7(img_dim,n_classes,wd):
_input = Input(shape=img_dim, name="classificator_input")
x = Flatten()(_input)
out = Dense(n_classes, activation='softmax',init="he_normal", name='fc',W_regularizer=l2(wd))(x)
resnet_model = Model(input=_input, output=out, name="fc_classifier")
visualize_model(resnet_model)
return resnet_model
def GenToClassifierModel(generator, classifier, noise_dim, img_source_dim):
"""GEN + classifier model
Args:
generator: keras generator model
classifier: keras classifier model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator([noise_input,image_input])
y_pred = classifier(generated_image)
GenToClassifierModel = Model(input=[noise_input,image_input],
output=y_pred,
name="GenToClassifierModel")
visualize_model(GenToClassifierModel)
return GenToClassifierModel
def DCGAN(generator, discriminator, noise_dim, img_source_dim, img_dest_dim,monsterClass):
"""DCGAN generator + discriminator model
Args:
generator: keras generator model
discriminator: keras discriminator model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator([noise_input,image_input])
if monsterClass:
y_aux = discriminator(generated_image)
DCGAN = Model(input=[noise_input,image_input],
output=y_aux,
name="DCGAN")
else:
DCGAN_output,y_aux = discriminator(generated_image)
DCGAN = Model(input=[noise_input,image_input],
output=[DCGAN_output,y_aux],
name="DCGAN")
visualize_model(DCGAN)
return DCGAN
def DCGAN_naive(generator, discriminator, noise_dim, img_source_dim):
"""DCGAN generator + discriminator model
Args:
generator: keras generator model
discriminator: keras discriminator model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator([noise_input,image_input])
DCGAN_output = discriminator(generated_image)
DCGAN = Model(input=[noise_input,image_input],
output=DCGAN_output)
visualize_model(DCGAN)
return DCGAN
def DCGAN_naive2(generator, discriminator, noise_dim, img_source_dim):
"""DCGAN generator + discriminator model
Args:
generator: keras generator model
discriminator: keras discriminator model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator([noise_input,image_input])
DCGAN_output = discriminator(generated_image)
DCGAN = Model(input=[noise_input,image_input],
output=DCGAN_output)
visualize_model(DCGAN)
return DCGAN
def reconstructor(generator1, generator2, noise_dim, img_source_dim):
"""DCGAN generator + discriminator model
Args:
generator: keras generator model
discriminator: keras discriminator model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
noise_input2 = Input(shape=noise_dim, name="noise_input2")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator1([noise_input,image_input])
reconstructor_output = generator2([noise_input2,generated_image])
reconstructor = Model(input=[noise_input,image_input,noise_input2],
output=reconstructor_output)
visualize_model(reconstructor)
return reconstructor
def reconstructorClass(generator1, generator2, classificator, noise_dim, img_source_dim):
"""DCGAN generator + discriminator model
Args:
generator: keras generator model
discriminator: keras discriminator model
noise_dim: generator input noise dimension
img_dim: real image data dimension
Returns:
keras model
"""
noise_input = Input(shape=noise_dim, name="noise_input")
noise_input2 = Input(shape=noise_dim, name="noise_input2")
image_input = Input(shape=img_source_dim, name="image_input")
generated_image = generator1([noise_input,image_input])
reconstructor_output = generator2([noise_input2,generated_image])
recClass_output = classificator(reconstructor_output)
reconstructor = Model(input=[noise_input,image_input,noise_input2],
output=recClass_output)
visualize_model(reconstructor)
return reconstructor
class RandomWeightedAverage(_Merge):
"""Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line
between each pair of input points.
Inheriting from _Merge is a little messy but it was the quickest solution I could think of.
Improvements appreciated."""
def _merge_function(self, inputs):
weights = K.random_uniform((32, 1, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
def disc_penalty(discriminator_model, noise_dim, img_source_dim, opt, model_name="disc_penalty_model"):
image_input_real = Input(shape=img_source_dim, name="image_input_real")
image_input_gen = Input(shape=img_source_dim, name="image_input_gen")
averaged_samples = RandomWeightedAverage()([image_input_real, image_input_gen])
averaged_samples_output = discriminator_model(averaged_samples)
disc_penalty_model = Model(input=[image_input_real,image_input_gen],
output=averaged_samples_output)
partial_gp_loss = partial(gradient_penalty_loss,
averaged_samples=averaged_samples,
gradient_penalty_weight=10)
partial_gp_loss.__name__ = 'gradient_penalty' # Functions need names or Keras will throw an error
disc_penalty_model.compile(loss=partial_gp_loss, optimizer=opt)
return disc_penalty_model