forked from CallumMcMahon/Mesh-Style-Similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh_pool.py
208 lines (190 loc) · 9.67 KB
/
mesh_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
from models.layers.mesh_union import MeshUnion
import numpy as np
from torch.nn.utils.rnn import pad_sequence
class MeshPool(nn.Module):
def __init__(self, target):
super(MeshPool, self).__init__()
self.__out_target = target
self.__fe = None
self.__updated_fe = None
self.__meshes = None
def forward(self, fe, meshes):
self.__updated_fe = [[] for _ in range(len(meshes))]
self.__fe = fe
self.__meshes = meshes
# iterate over batch
for mesh_index in range(len(meshes)):
self.__pool_main(mesh_index)
#out_features = torch.cat(self.__updated_fe).view(len(meshes), -1, self.__out_target)
# if impossible to pool to required amount, pad all meshes
out_features = pad_sequence([feat for feat in self.__updated_fe], batch_first=True).transpose(1, 2)
return out_features
def __pool_main(self, mesh_index):
mesh = self.__meshes[mesh_index]
fe = self.__fe[mesh_index, :, :mesh.edges_count]
# magnitude of features
in_fe_sq = torch.sum(fe ** 2, dim=0)
sorted, edge_ids = torch.sort(in_fe_sq, descending=True)
edge_ids = edge_ids.tolist()
# keep track of already collapsed edges
mask = np.ones(mesh.edges_count, dtype=np.bool)
edge_groups = MeshUnion(mesh.edges_count, self.__fe.device)
while mesh.edges_count > self.__out_target and len(edge_ids) > 0:
# retrieve the smallest edge of those remaining
edge_id = edge_ids.pop()
if mask[edge_id]:
self.__pool_edge(mesh, edge_id, mask, edge_groups)
mesh.clean(mask, edge_groups)
fe = edge_groups.rebuild_features(self.__fe[mesh_index], mask, self.__out_target)
self.__updated_fe[mesh_index] = fe
def __pool_edge(self, mesh, edge_id, mask, edge_groups):
if self.has_boundaries(mesh, edge_id):
return False
elif self.__clean_side(mesh, edge_id, mask, edge_groups, 0) \
and self.__clean_side(mesh, edge_id, mask, edge_groups, 2) \
and self.__is_one_ring_valid(mesh, edge_id):
self.__pool_side(mesh, edge_id, mask, edge_groups, 0)
self.__pool_side(mesh, edge_id, mask, edge_groups, 2)
mesh.merge_vertices(edge_id)
mask[edge_id] = False
MeshPool.__remove_group(edge_groups, edge_id)
mesh.edges_count -= 1
return True
else:
return False
def __clean_side(self, mesh, edge_id, mask, edge_groups, side):
# shouldn't need this, already checked in __pool_main while loop
if mesh.edges_count <= self.__out_target:
return False
invalid_edges = MeshPool.__get_invalids(mesh, edge_id, edge_groups, side)
# stop pooling if connected component pooled to a single triangle
if invalid_edges is None:
return False
# keep collapsing triplets (vertex with only three edges)
# until no triplet, sufficient pooling, or single triangle left
while len(invalid_edges) != 0 and mesh.edges_count > self.__out_target:
self.__remove_triplete(mesh, mask, edge_groups, invalid_edges)
if mesh.edges_count <= self.__out_target:
return False
if self.has_boundaries(mesh, edge_id):
return False
invalid_edges = self.__get_invalids(mesh, edge_id, edge_groups, side)
if invalid_edges is None:
return False
return True
@staticmethod
def has_boundaries(mesh, edge_id):
# checks if edge is on a boundary, by checking if each edge in 1-ring has 4 neighbours
# avoids edge collapse without connected faces leaving edge and no face
for edge in mesh.gemm_edges[edge_id]:
if edge == -1 or -1 in mesh.gemm_edges[edge]:
return True
return False
@staticmethod
def __is_one_ring_valid(mesh, edge_id):
# get all vertices connected to each end of edge_id
# the set of vertices present in both should be 2 (third vertex of ONLY 2 faces connected)
v_a = set(mesh.edges[mesh.ve[mesh.edges[edge_id, 0]]].reshape(-1))
v_b = set(mesh.edges[mesh.ve[mesh.edges[edge_id, 1]]].reshape(-1))
shared = v_a & v_b - set(mesh.edges[edge_id])
return len(shared) == 2
def __pool_side(self, mesh, edge_id, mask, edge_groups, side):
info = MeshPool.__get_face_info(mesh, edge_id, side)
key_a, key_b, side_a, side_b, _, other_side_b, _, other_keys_b = info
self.__redirect_edges(mesh, key_a, side_a - side_a % 2, other_keys_b[0], mesh.sides[key_b, other_side_b])
self.__redirect_edges(mesh, key_a, side_a - side_a % 2 + 1, other_keys_b[1],
mesh.sides[key_b, other_side_b + 1])
MeshPool.__union_groups(edge_groups, key_b, key_a)
MeshPool.__union_groups(edge_groups, edge_id, key_a)
mask[key_b] = False
MeshPool.__remove_group(edge_groups, key_b)
mesh.remove_edge(key_b)
mesh.edges_count -= 1
return key_a
@staticmethod
def __get_invalids(mesh, edge_id, edge_groups, side):
'''Detects when pooling a face would make 2 connected faces have zero-area.
Happens when vertex in common only used for those 3 faces'''
# check face is not the only one left in the component
if len(set(mesh.gemm_edges[edge_id])) == 2:
return None
info = MeshPool.__get_face_info(mesh, edge_id, side)
key_a, key_b, side_a, side_b, other_side_a, other_side_b, other_keys_a, other_keys_b = info
shared_items = MeshPool.__get_shared_items(other_keys_a, other_keys_b)
if len(shared_items) == 0:
return []
else:
#if shared edge, then pooling would lead to 2 zero-area faces, bad!
assert (len(shared_items) == 2)
middle_edge = other_keys_a[shared_items[0]]
# todo change index to other_keys_a[0] and other_keys_b[1]
update_key_a = other_keys_a[1 - shared_items[0]]
update_key_b = other_keys_b[1 - shared_items[1]]
update_side_a = mesh.sides[key_a, other_side_a + 1 - shared_items[0]]
update_side_b = mesh.sides[key_b, other_side_b + 1 - shared_items[1]]
MeshPool.__redirect_edges(mesh, edge_id, side, update_key_a, update_side_a)
MeshPool.__redirect_edges(mesh, edge_id, side + 1, update_key_b, update_side_b)
MeshPool.__redirect_edges(mesh, update_key_a, MeshPool.__get_other_side(update_side_a), update_key_b,
MeshPool.__get_other_side(update_side_b))
MeshPool.__union_groups(edge_groups, key_a, edge_id)
MeshPool.__union_groups(edge_groups, key_b, edge_id)
MeshPool.__union_groups(edge_groups, key_a, update_key_a)
MeshPool.__union_groups(edge_groups, middle_edge, update_key_a)
MeshPool.__union_groups(edge_groups, key_b, update_key_b)
MeshPool.__union_groups(edge_groups, middle_edge, update_key_b)
return [key_a, key_b, middle_edge]
@staticmethod
def __redirect_edges(mesh, edge_a_key, side_a, edge_b_key, side_b):
mesh.gemm_edges[edge_a_key, side_a] = edge_b_key
mesh.gemm_edges[edge_b_key, side_b] = edge_a_key
mesh.sides[edge_a_key, side_a] = side_b
mesh.sides[edge_b_key, side_b] = side_a
@staticmethod
def __get_shared_items(list_a, list_b):
"""compares lists of edges and finds edges in common
badly written, only expects one element in common.
return[0] is idx of element in first list, return[1] is idx of same element in second list"""
shared_items = []
for i in range(len(list_a)):
for j in range(len(list_b)):
if list_a[i] == list_b[j]:
shared_items.extend([i, j])
return shared_items
@staticmethod
def __get_other_side(side):
return side + 1 - 2 * (side % 2)
@staticmethod
def __get_face_info(mesh, edge_id, side) -> (int, int, int, int, int, int, list, list):
''' gets edge idxs of face on side "side" connected to edge_id
also gets edges of faces connected to the relevant face
'''
key_a = mesh.gemm_edges[edge_id, side]
key_b = mesh.gemm_edges[edge_id, side + 1]
# logic to determine position and subsequently edge idx of other two edges connected to edge_a and edge_b
side_a = mesh.sides[edge_id, side]
side_b = mesh.sides[edge_id, side + 1]
other_side_a = (side_a - (side_a % 2) + 2) % 4
other_side_b = (side_b - (side_b % 2) + 2) % 4
# list of the two edges making the other face connected to edge a
other_keys_a = [mesh.gemm_edges[key_a, other_side_a], mesh.gemm_edges[key_a, other_side_a + 1]]
other_keys_b = [mesh.gemm_edges[key_b, other_side_b], mesh.gemm_edges[key_b, other_side_b + 1]]
return key_a, key_b, side_a, side_b, other_side_a, other_side_b, other_keys_a, other_keys_b
@staticmethod
def __remove_triplete(mesh, mask, edge_groups, invalid_edges):
vertex = set(mesh.edges[invalid_edges[0]])
for edge_key in invalid_edges:
vertex &= set(mesh.edges[edge_key])
mask[edge_key] = False
MeshPool.__remove_group(edge_groups, edge_key)
mesh.edges_count -= 3
vertex = list(vertex)
assert (len(vertex) == 1)
mesh.remove_vertex(vertex[0])
@staticmethod
def __union_groups(edge_groups, source, target):
edge_groups.union(source, target)
@staticmethod
def __remove_group(edge_groups, index):
edge_groups.remove_group(index)