-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patha_star.py
172 lines (131 loc) · 3.98 KB
/
a_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/local/env python
"""
============
A* algorithm
============
Ref: https://en.wikipedia.org/wiki/A*_search_algorithm
An example to show how to search path between two cities.
Heuristic function:
f(n) = g(n) + h(n)
g(n) denotes the from start node to current node, h(n) denotes the cost from
current node to target node
Examples
--------
$ python a_start.py ../data/geo/cities.json 海口 哈尔滨
"""
import sys
import json
import math
import heapq
import argparse
def geo_distance(origin, destination):
"""
Calculate the Haversine distance.
Parameters
----------
origin : tuple of float
(lat, long)
destination : tuple of float
(lat, long)
Returns
-------
distance_in_km : float
Examples
--------
>>> origin = (48.1372, 11.5756) # Munich
>>> destination = (52.5186, 13.4083) # Berlin
>>> round(distance(origin, destination), 1)
504.2
"""
lon1, lat1 = origin
lon2, lat2 = destination
radius = 6371 # km
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = math.sin(dlat / 2) * math.sin(dlat / 2) + \
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * \
math.sin(dlon / 2) * math.sin(dlon / 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = radius * c
return d
def build_graph(path):
threshold = 700
graph = {}
locations = {}
with open(path, 'rb') as f:
data = json.load(f)
for city1 in data:
locations[city1['name']] = city1['geoCoord']
for city2 in data:
if city1['name'] == city2['name']:
continue
dist = geo_distance(city1['geoCoord'], city2['geoCoord'])
if dist < threshold:
try:
graph[city1['name']].add(city2['name'])
except KeyError:
graph[city1['name']] = set([city2['name']])
return graph, locations
def distance_heuristic(locations, from_city, to_city, cur_city):
"""
Distance base heuristic function
hn = distance in km between target city and current city
gn = distance in km between from city and current city
"""
hn = geo_distance(
(locations[to_city][1], locations[to_city][0]),
(locations[cur_city][1], locations[cur_city][0]),
)
gn = geo_distance(
(locations[from_city][1], locations[from_city][0]),
(locations[cur_city][1], locations[cur_city][0]),
)
return gn + hn
def astar_search(graph, locations, from_node, to_node):
"""
Find the route in `graph` from `from_node` to `to_node` with A* search
"""
seen = set()
pending = []
path = []
heuristic = distance_heuristic(locations, from_node, to_node, from_node)
heapq.heappush(pending, (heuristic, from_node))
while len(pending) > 0:
_, cur_node = heapq.heappop(pending)
if cur_node in seen:
continue
if cur_node == to_node:
path.append(cur_node)
return path
for neighbor in graph[cur_node]:
if neighbor in seen:
continue
# Heuristic function: From current city to next neighbor and the target city
heuristic = distance_heuristic(locations, cur_node, to_node, neighbor)
heapq.heappush(pending, (heuristic, neighbor))
path.append(cur_node)
seen.add(cur_node)
return path
def print_path(path):
print(' -> '.join(path))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'path',
type=str,
help='The cities json path'
)
parser.add_argument(
'from_city',
type=str,
help='From city'
)
parser.add_argument(
'to_city',
type=str,
help='To city'
)
args = parser.parse_args(sys.argv[1:])
graph, locations = build_graph(args.path)
path = astar_search(graph, locations, args.from_city, args.to_city)
print_path(path)