The examples below use low-level APIs in TensorFlow to implement a linear regression model and a DNN binary classification model.
Low-level API includes tensor operation, graph and automatic differentiates.
import tensorflow as tf
# Time Stamp
@tf.function
def printbar():
today_ts = tf.timestamp()%(24*60*60)
hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
minite = tf.cast((today_ts%3600)//60,tf.int32)
second = tf.cast(tf.floor(today_ts%60),tf.int32)
def timeformat(m):
if tf.strings.length(tf.strings.format("{}",m))==1:
return(tf.strings.format("0{}",m))
else:
return(tf.strings.format("{}",m))
timestring = tf.strings.join([timeformat(hour),timeformat(minite),
timeformat(second)],separator = ":")
tf.print("=========="*8+timestring)
(a) Data Preparation
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
# Number of samples
n = 400
# Generating the datasets
X = tf.random.uniform([n,2],minval=-10,maxval=10)
w0 = tf.constant([[2.0],[-3.0]])
b0 = tf.constant([[3.0]])
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) # @ is matrix multiplication; adding Gaussian noise
# Data Visualization
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b")
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)
ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g")
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()
# Creating generator of data pipeline
def data_iter(features, labels, batch_size=8):
num_examples = len(features)
indices = list(range(num_examples))
np.random.shuffle(indices) # Randomized reading order of the samples
for i in range(0, num_examples, batch_size):
indexs = indices[i: min(i + batch_size, num_examples)]
yield tf.gather(features,indexs), tf.gather(labels,indexs)
# Testing the data pipeline
batch_size = 8
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 2.6161194 0.11071014]
[ 9.79207 -0.70180416]
[ 9.792343 6.9149055 ]
[-2.4186516 -9.375019 ]
[ 9.83749 -3.4637213 ]
[ 7.3953056 4.374569 ]
[-0.14686584 -0.28063297]
[ 0.49001217 -9.739792 ]], shape=(8, 2), dtype=float32)
tf.Tensor(
[[ 9.334667 ]
[22.058844 ]
[ 3.0695205]
[26.736238 ]
[35.292133 ]
[ 4.2943544]
[ 1.6713585]
[34.826904 ]], shape=(8, 1), dtype=float32)
(b) Model Definition
w = tf.Variable(tf.random.normal(w0.shape))
b = tf.Variable(tf.zeros_like(b0,dtype = tf.float32))
# Defining Model
class LinearRegression:
# Forward propagation
def __call__(self,x):
return x@w + b
# Loss function
def loss_func(self,y_true,y_pred):
return tf.reduce_mean((y_true - y_pred)**2/2)
model = LinearRegression()
(c) Model Training
# Debug in dynamic graph
def train_step(model, features, labels):
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels, predictions)
# Back propagation to calculate the gradients
dloss_dw,dloss_db = tape.gradient(loss,[w,b])
# Updating parameters using gradient descending method
w.assign(w - 0.001*dloss_dw)
b.assign(b - 0.001*dloss_db)
return loss
# Test the results of train_step
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
train_step(model,features,labels)
<tf.Tensor: shape=(), dtype=float32, numpy=211.09982>
def train_model(model,epochs):
for epoch in tf.range(1,epochs+1):
for features, labels in data_iter(X,Y,10):
loss = train_step(model,features,labels)
if epoch%50==0:
printbar()
tf.print("epoch =",epoch,"loss = ",loss)
tf.print("w =",w)
tf.print("b =",b)
train_model(model,epochs = 200)
================================================================================16:35:56
epoch = 50 loss = 1.78806472
w = [[1.97554708]
[-2.97719598]]
b = [[2.60692883]]
================================================================================16:36:00
epoch = 100 loss = 2.64588404
w = [[1.97319281]
[-2.97810626]]
b = [[2.95525956]]
================================================================================16:36:04
epoch = 150 loss = 1.42576694
w = [[1.96466208]
[-2.98337793]]
b = [[3.00264144]]
================================================================================16:36:08
epoch = 200 loss = 1.68992615
w = [[1.97718477]
[-2.983814]]
b = [[3.01013041]]
## Accelerate using Autograph to transform the dynamic graph into static
@tf.function
def train_step(model, features, labels):
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels, predictions)
# Back propagation to calculate the gradients
dloss_dw,dloss_db = tape.gradient(loss,[w,b])
# Updating parameters using gradient descending method
w.assign(w - 0.001*dloss_dw)
b.assign(b - 0.001*dloss_db)
return loss
def train_model(model,epochs):
for epoch in tf.range(1,epochs+1):
for features, labels in data_iter(X,Y,10):
loss = train_step(model,features,labels)
if epoch%50==0:
printbar()
tf.print("epoch =",epoch,"loss = ",loss)
tf.print("w =",w)
tf.print("b =",b)
train_model(model,epochs = 200)
================================================================================16:36:35
epoch = 50 loss = 0.894210339
w = [[1.96927285]
[-2.98914337]]
b = [[3.00987792]]
================================================================================16:36:36
epoch = 100 loss = 1.58621466
w = [[1.97566223]
[-2.98550248]]
b = [[3.00998402]]
================================================================================16:36:37
epoch = 150 loss = 2.2695992
w = [[1.96664226]
[-2.99248481]]
b = [[3.01028705]]
================================================================================16:36:38
epoch = 200 loss = 1.90848124
w = [[1.98000824]
[-2.98888135]]
b = [[3.01085401]]
# Visualizing the results
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)
ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()
(a) Data Preparation
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
# Number of the positive/negative samples
n_positive,n_negative = 2000,2000
# Generating the positive samples with a distribution on a smaller ring
r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi)
Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
Yp = tf.ones_like(r_p)
# Generating the negative samples with a distribution on a larger ring
r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi)
Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
Yn = tf.zeros_like(r_n)
# Assembling all samples
X = tf.concat([Xp,Xn],axis = 0)
Y = tf.concat([Yp,Yn],axis = 0)
# Visualizing the data
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"]);
# Create the generator of the data pipeline
def data_iter(features, labels, batch_size=8):
num_examples = len(features)
indices = list(range(num_examples))
np.random.shuffle(indices) # Randomizing the reading order of the samples
for i in range(0, num_examples, batch_size):
indexs = indices[i: min(i + batch_size, num_examples)]
yield tf.gather(features,indexs), tf.gather(labels,indexs)
# Testing data pipeline
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 0.03732629 3.5783494 ]
[ 0.542919 5.035079 ]
[ 5.860281 -2.4476354 ]
[ 0.63657564 3.194231 ]
[-3.5072308 2.5578873 ]
[-2.4109735 -3.6621518 ]
[ 4.0975413 -2.4172943 ]
[ 1.9393908 -6.782317 ]
[-4.7453732 -0.5176727 ]
[-1.4057113 -7.9775257 ]], shape=(10, 2), dtype=float32)
tf.Tensor(
[[1.]
[1.]
[0.]
[1.]
[1.]
[1.]
[1.]
[0.]
[1.]
[0.]], shape=(10, 1), dtype=float32)
(b) Model Definition
Here the tf.Module
is used for organizing the parameters in the model. You may refer to the last section of Chapter 4 (AutoGraph and tf.Module) for more details of tf.Module
.
class DNNModel(tf.Module):
def __init__(self,name = None):
super(DNNModel, self).__init__(name=name)
self.w1 = tf.Variable(tf.random.truncated_normal([2,4]),dtype = tf.float32)
self.b1 = tf.Variable(tf.zeros([1,4]),dtype = tf.float32)
self.w2 = tf.Variable(tf.random.truncated_normal([4,8]),dtype = tf.float32)
self.b2 = tf.Variable(tf.zeros([1,8]),dtype = tf.float32)
self.w3 = tf.Variable(tf.random.truncated_normal([8,1]),dtype = tf.float32)
self.b3 = tf.Variable(tf.zeros([1,1]),dtype = tf.float32)
# Forward propagation
@tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])
def __call__(self,x):
x = tf.nn.relu(x@self.w1 + self.b1)
x = tf.nn.relu(x@self.w2 + self.b2)
y = tf.nn.sigmoid(x@self.w3 + self.b3)
return y
# Loss function (binary cross entropy)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def loss_func(self,y_true,y_pred):
# Limiting the prediction between 1e-7 and 1 - 1e-7 to avoid the error at log(0)
eps = 1e-7
y_pred = tf.clip_by_value(y_pred,eps,1.0-eps)
bce = - y_true*tf.math.log(y_pred) - (1-y_true)*tf.math.log(1-y_pred)
return tf.reduce_mean(bce)
# Metric (Accuracy)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def metric_func(self,y_true,y_pred):
y_pred = tf.where(y_pred>0.5,tf.ones_like(y_pred,dtype = tf.float32),
tf.zeros_like(y_pred,dtype = tf.float32))
acc = tf.reduce_mean(1-tf.abs(y_true-y_pred))
return acc
model = DNNModel()
# Testing the structure of model
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
predictions = model(features)
loss = model.loss_func(labels,predictions)
metric = model.metric_func(labels,predictions)
tf.print("init loss:",loss)
tf.print("init metric",metric)
init loss: 1.76568353
init metric 0.6
print(len(model.trainable_variables))
6
(c) Model Training
## Transform to static graph for acceleration using Autograph
@tf.function
def train_step(model, features, labels):
# Forward propagation to calculate the loss
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels, predictions)
# Backward propagation to calculate the gradients
grads = tape.gradient(loss, model.trainable_variables)
# Applying gradient descending
for p, dloss_dp in zip(model.trainable_variables,grads):
p.assign(p - 0.001*dloss_dp)
# Calculate metric
metric = model.metric_func(labels,predictions)
return loss, metric
def train_model(model,epochs):
for epoch in tf.range(1,epochs+1):
for features, labels in data_iter(X,Y,100):
loss,metric = train_step(model,features,labels)
if epoch%100==0:
printbar()
tf.print("epoch =",epoch,"loss = ",loss, "accuracy = ", metric)
train_model(model,epochs = 600)
================================================================================16:47:35
epoch = 100 loss = 0.567795336 accuracy = 0.71
================================================================================16:47:39
epoch = 200 loss = 0.50955683 accuracy = 0.77
================================================================================16:47:43
epoch = 300 loss = 0.421476126 accuracy = 0.84
================================================================================16:47:47
epoch = 400 loss = 0.330618203 accuracy = 0.9
================================================================================16:47:51
epoch = 500 loss = 0.308296859 accuracy = 0.89
================================================================================16:47:55
epoch = 600 loss = 0.279367268 accuracy = 0.96
# Visualizing the results
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
ax1.scatter(Xp[:,0],Xp[:,1],c = "r")
ax1.scatter(Xn[:,0],Xn[:,1],c = "g")
ax1.legend(["positive","negative"]);
ax1.set_title("y_true");
Xp_pred = tf.boolean_mask(X,tf.squeeze(model(X)>=0.5),axis = 0)
Xn_pred = tf.boolean_mask(X,tf.squeeze(model(X)<0.5),axis = 0)
ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred");
Please leave comments in the WeChat official account "Pythonไธ็ฎๆณไน็พ" (Elegance of Python and Algorithms) if you want to communicate with the author about the content. The author will try best to reply given the limited time available.
You are also welcomed to join the group chat with the other readers through replying ๅ ็พค (join group) in the WeChat official account.