Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

检测输出为[0,-1,-1,-1,-1,-1,-1,-1] #29

Open
wweiCV opened this issue Mar 12, 2020 · 0 comments
Open

检测输出为[0,-1,-1,-1,-1,-1,-1,-1] #29

wweiCV opened this issue Mar 12, 2020 · 0 comments

Comments

@wweiCV
Copy link

wweiCV commented Mar 12, 2020

您好,我在windows下使用detection_out.cpp推理时,用models\yolov3路径下的模型测试检测正常,但是切换到自己的模型测试时检测层输出一直为[0,-1,-1,-1,-1,-1,-1,-1],模型是使用您linux版本的环境训练的,训练时map值正常。我将caffemodel转成ncnn,在ncnn下测试也正常。我怀疑可能是deploy文件中layer层与linux环境中的layer不一样导致,但是比对只后未发现异常,这个问题困扰我好多天了,请求您的帮助!这是我的deploy文件。
name: "yolov3"
input: "data"
layer {
name: "data"
type: "Input"
top: "data"
input_param {shape {dim: 1 dim: 3 dim: 800 dim: 800 } }
}

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 16
bias_term: false
pad: 1
kernel_size: 3
group: 1
stride: 2
weight_filler {
type: "msra"
}
dilation: 1
}
}

layer {
name: "bn_scale1"
type: "Scale"
bottom: "conv1"
top: "conv1"
scale_param {
bias_term: true
}
}
layer {
name: "power1"
type: "Power"
bottom: "conv1"
top: "power1"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus1"
type: "ReLU6"
bottom: "power1"
top: "relus1"
}
layer {
name: "power2"
type: "Power"
bottom: "relus1"
top: "power2"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul1"
type: "Eltwise"
bottom: "conv1"
bottom: "power2"
top: "mul1"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv2"
type: "DepthwiseConvolution"
bottom: "mul1"
top: "conv2"
convolution_param {
num_output: 16
bias_term: false
pad: 1
kernel_size: 3
group: 16
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale2"
type: "Scale"
bottom: "conv2"
top: "conv2"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv2"
top: "relu1"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "relu1"
top: "conv3"
convolution_param {
num_output: 16
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale3"
type: "Scale"
bottom: "conv3"
top: "conv3"
scale_param {
bias_term: true
}
}
layer {
name: "add1"
type: "Eltwise"
bottom: "mul1"
bottom: "conv3"
top: "add1"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "add1"
top: "conv4"
convolution_param {
num_output: 64
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale4"
type: "Scale"
bottom: "conv4"
top: "conv4"
scale_param {
bias_term: true
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv4"
top: "relu2"
}
layer {
name: "conv5"
type: "DepthwiseConvolution"
bottom: "relu2"
top: "conv5"
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
group: 64
stride: 2
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale5"
type: "Scale"
bottom: "conv5"
top: "conv5"
scale_param {
bias_term: true
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv5"
top: "relu3"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "relu3"
top: "conv6"
convolution_param {
num_output: 24
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale6"
type: "Scale"
bottom: "conv6"
top: "conv6"
scale_param {
bias_term: true
}
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv6"
top: "conv7"
convolution_param {
num_output: 72
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale7"
type: "Scale"
bottom: "conv7"
top: "conv7"
scale_param {
bias_term: true
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv7"
top: "relu4"
}
layer {
name: "conv8"
type: "DepthwiseConvolution"
bottom: "relu4"
top: "conv8"
convolution_param {
num_output: 72
bias_term: false
pad: 1
kernel_size: 3
group: 72
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale8"
type: "Scale"
bottom: "conv8"
top: "conv8"
scale_param {
bias_term: true
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv8"
top: "relu5"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "relu5"
top: "conv9"
convolution_param {
num_output: 24
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale9"
type: "Scale"
bottom: "conv9"
top: "conv9"
scale_param {
bias_term: true
}
}
layer {
name: "add2"
type: "Eltwise"
bottom: "conv6"
bottom: "conv9"
top: "add2"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv10"
type: "Convolution"
bottom: "add2"
top: "conv10"
convolution_param {
num_output: 72
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale10"
type: "Scale"
bottom: "conv10"
top: "conv10"
scale_param {
bias_term: true
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "conv10"
top: "relu6"
}
layer {
name: "conv11"
type: "DepthwiseConvolution"
bottom: "relu6"
top: "conv11"
convolution_param {
num_output: 72
bias_term: false
pad: 2
kernel_size: 5
group: 72
stride: 2
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "ave_pool1"
type: "Pooling"
bottom: "conv11"
top: "ave_pool1"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route1"
type: "Concat"
bottom: "ave_pool1"
top: "route1"
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "route1"
top: "fc1"
inner_product_param {
num_output: 18
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc1"
top: "relu7"
}
layer {
name: "fc2"
type: "InnerProduct"
bottom: "relu7"
top: "fc2"
inner_product_param {
num_output: 72
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power3"
type: "Power"
bottom: "fc2"
top: "power3"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus2"
type: "ReLU6"
bottom: "power3"
top: "relus2"
}
layer {
name: "power4"
type: "Power"
bottom: "relus2"
top: "power4"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route2"
type: "Concat"
bottom: "power4"
top: "route2"
}
layer {
name: "scale1"
type: "Scale"
bottom: "conv11"
bottom: "route2"
top: "scale1"
scale_param {
axis: 0
}
}
layer {
name: "relu8"
type: "ReLU"
bottom: "scale1"
top: "relu8"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "relu8"
top: "conv12"
convolution_param {
num_output: 40
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale12"
type: "Scale"
bottom: "conv12"
top: "conv12"
scale_param {
bias_term: true
}
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv12"
top: "conv13"
convolution_param {
num_output: 120
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale13"
type: "Scale"
bottom: "conv13"
top: "conv13"
scale_param {
bias_term: true
}
}
layer {
name: "relu9"
type: "ReLU"
bottom: "conv13"
top: "relu9"
}
layer {
name: "conv14"
type: "DepthwiseConvolution"
bottom: "relu9"
top: "conv14"
convolution_param {
num_output: 120
bias_term: false
pad: 2
kernel_size: 5
group: 120
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale14"
type: "Scale"
bottom: "conv14"
top: "conv14"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool2"
type: "Pooling"
bottom: "conv14"
top: "ave_pool2"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route3"
type: "Concat"
bottom: "ave_pool2"
top: "route3"
}
layer {
name: "fc3"
type: "InnerProduct"
bottom: "route3"
top: "fc3"
inner_product_param {
num_output: 30
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu10"
type: "ReLU"
bottom: "fc3"
top: "relu10"
}
layer {
name: "fc4"
type: "InnerProduct"
bottom: "relu10"
top: "fc4"
inner_product_param {
num_output: 120
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power5"
type: "Power"
bottom: "fc4"
top: "power5"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus3"
type: "ReLU6"
bottom: "power5"
top: "relus3"
}
layer {
name: "power6"
type: "Power"
bottom: "relus3"
top: "power6"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route4"
type: "Concat"
bottom: "power6"
top: "route4"
}
layer {
name: "scale2"
type: "Scale"
bottom: "conv14"
bottom: "route4"
top: "scale2"
scale_param {
axis: 0
}
}
layer {
name: "relu11"
type: "ReLU"
bottom: "scale2"
top: "relu11"
}
layer {
name: "conv15"
type: "Convolution"
bottom: "relu11"
top: "conv15"
convolution_param {
num_output: 40
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale15"
type: "Scale"
bottom: "conv15"
top: "conv15"
scale_param {
bias_term: true
}
}
layer {
name: "add3"
type: "Eltwise"
bottom: "conv12"
bottom: "conv15"
top: "add3"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv16"
type: "Convolution"
bottom: "add3"
top: "conv16"
convolution_param {
num_output: 120
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale16"
type: "Scale"
bottom: "conv16"
top: "conv16"
scale_param {
bias_term: true
}
}
layer {
name: "relu12"
type: "ReLU"
bottom: "conv16"
top: "relu12"
}
layer {
name: "conv17"
type: "DepthwiseConvolution"
bottom: "relu12"
top: "conv17"
convolution_param {
num_output: 120
bias_term: false
pad: 2
kernel_size: 5
group: 120
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}

layer {
name: "bn_scale17"
type: "Scale"
bottom: "conv17"
top: "conv17"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool3"
type: "Pooling"
bottom: "conv17"
top: "ave_pool3"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route5"
type: "Concat"
bottom: "ave_pool3"
top: "route5"
}
layer {
name: "fc5"
type: "InnerProduct"
bottom: "route5"
top: "fc5"
inner_product_param {
num_output: 30
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu13"
type: "ReLU"
bottom: "fc5"
top: "relu13"
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "relu13"
top: "fc6"
inner_product_param {
num_output: 120
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power7"
type: "Power"
bottom: "fc6"
top: "power7"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus4"
type: "ReLU6"
bottom: "power7"
top: "relus4"
}
layer {
name: "power8"
type: "Power"
bottom: "relus4"
top: "power8"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route6"
type: "Concat"
bottom: "power8"
top: "route6"
}
layer {
name: "scale3"
type: "Scale"
bottom: "conv17"
bottom: "route6"
top: "scale3"
scale_param {
axis: 0
}
}
layer {
name: "relu14"
type: "ReLU"
bottom: "scale3"
top: "relu14"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "relu14"
top: "conv18"
convolution_param {
num_output: 40
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale18"
type: "Scale"
bottom: "conv18"
top: "conv18"
scale_param {
bias_term: true
}
}
layer {
name: "add4"
type: "Eltwise"
bottom: "add3"
bottom: "conv18"
top: "add4"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv19"
type: "Convolution"
bottom: "add4"
top: "conv19"
convolution_param {
num_output: 240
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale19"
type: "Scale"
bottom: "conv19"
top: "conv19"
scale_param {
bias_term: true
}
}
layer {
name: "power9"
type: "Power"
bottom: "conv19"
top: "power9"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus5"
type: "ReLU6"
bottom: "power9"
top: "relus5"
}
layer {
name: "power10"
type: "Power"
bottom: "relus5"
top: "power10"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul2"
type: "Eltwise"
bottom: "conv19"
bottom: "power10"
top: "mul2"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv20"
type: "DepthwiseConvolution"
bottom: "mul2"
top: "conv20"
convolution_param {
num_output: 240
bias_term: false
pad: 1
kernel_size: 3
group: 240
stride: 2
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale20"
type: "Scale"
bottom: "conv20"
top: "conv20"
scale_param {
bias_term: true
}
}
layer {
name: "power11"
type: "Power"
bottom: "conv20"
top: "power11"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus6"
type: "ReLU6"
bottom: "power11"
top: "relus6"
}
layer {
name: "power12"
type: "Power"
bottom: "relus6"
top: "power12"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul3"
type: "Eltwise"
bottom: "conv20"
bottom: "power12"
top: "mul3"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv21"
type: "Convolution"
bottom: "mul3"
top: "conv21"
convolution_param {
num_output: 80
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale21"
type: "Scale"
bottom: "conv21"
top: "conv21"
scale_param {
bias_term: true
}
}
layer {
name: "conv22"
type: "Convolution"
bottom: "conv21"
top: "conv22"
convolution_param {
num_output: 200
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale22"
type: "Scale"
bottom: "conv22"
top: "conv22"
scale_param {
bias_term: true
}
}
layer {
name: "power13"
type: "Power"
bottom: "conv22"
top: "power13"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus7"
type: "ReLU6"
bottom: "power13"
top: "relus7"
}
layer {
name: "power14"
type: "Power"
bottom: "relus7"
top: "power14"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul4"
type: "Eltwise"
bottom: "conv22"
bottom: "power14"
top: "mul4"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv23"
type: "DepthwiseConvolution"
bottom: "mul4"
top: "conv23"
convolution_param {
num_output: 200
bias_term: false
pad: 1
kernel_size: 3
group: 200
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale23"
type: "Scale"
bottom: "conv23"
top: "conv23"
scale_param {
bias_term: true
}
}
layer {
name: "power15"
type: "Power"
bottom: "conv23"
top: "power15"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus8"
type: "ReLU6"
bottom: "power15"
top: "relus8"
}
layer {
name: "power16"
type: "Power"
bottom: "relus8"
top: "power16"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul5"
type: "Eltwise"
bottom: "conv23"
bottom: "power16"
top: "mul5"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv24"
type: "Convolution"
bottom: "mul5"
top: "conv24"
convolution_param {
num_output: 80
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale24"
type: "Scale"
bottom: "conv24"
top: "conv24"
scale_param {
bias_term: true
}
}
layer {
name: "add5"
type: "Eltwise"
bottom: "conv21"
bottom: "conv24"
top: "add5"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv25"
type: "Convolution"
bottom: "add5"
top: "conv25"
convolution_param {
num_output: 184
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale25"
type: "Scale"
bottom: "conv25"
top: "conv25"
scale_param {
bias_term: true
}
}
layer {
name: "power17"
type: "Power"
bottom: "conv25"
top: "power17"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus9"
type: "ReLU6"
bottom: "power17"
top: "relus9"
}
layer {
name: "power18"
type: "Power"
bottom: "relus9"
top: "power18"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul6"
type: "Eltwise"
bottom: "conv25"
bottom: "power18"
top: "mul6"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv26"
type: "DepthwiseConvolution"
bottom: "mul6"
top: "conv26"
convolution_param {
num_output: 184
bias_term: false
pad: 1
kernel_size: 3
group: 184
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale26"
type: "Scale"
bottom: "conv26"
top: "conv26"
scale_param {
bias_term: true
}
}
layer {
name: "power19"
type: "Power"
bottom: "conv26"
top: "power19"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus10"
type: "ReLU6"
bottom: "power19"
top: "relus10"
}
layer {
name: "power20"
type: "Power"
bottom: "relus10"
top: "power20"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul7"
type: "Eltwise"
bottom: "conv26"
bottom: "power20"
top: "mul7"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv27"
type: "Convolution"
bottom: "mul7"
top: "conv27"
convolution_param {
num_output: 80
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale27"
type: "Scale"
bottom: "conv27"
top: "conv27"
scale_param {
bias_term: true
}
}
layer {
name: "add6"
type: "Eltwise"
bottom: "add5"
bottom: "conv27"
top: "add6"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv28"
type: "Convolution"
bottom: "add6"
top: "conv28"
convolution_param {
num_output: 184
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale28"
type: "Scale"
bottom: "conv28"
top: "conv28"
scale_param {
bias_term: true
}
}
layer {
name: "power21"
type: "Power"
bottom: "conv28"
top: "power21"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus11"
type: "ReLU6"
bottom: "power21"
top: "relus11"
}
layer {
name: "power22"
type: "Power"
bottom: "relus11"
top: "power22"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul8"
type: "Eltwise"
bottom: "conv28"
bottom: "power22"
top: "mul8"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv29"
type: "DepthwiseConvolution"
bottom: "mul8"
top: "conv29"
convolution_param {
num_output: 184
bias_term: false
pad: 1
kernel_size: 3
group: 184
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale29"
type: "Scale"
bottom: "conv29"
top: "conv29"
scale_param {
bias_term: true
}
}
layer {
name: "power23"
type: "Power"
bottom: "conv29"
top: "power23"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus12"
type: "ReLU6"
bottom: "power23"
top: "relus12"
}
layer {
name: "power24"
type: "Power"
bottom: "relus12"
top: "power24"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul9"
type: "Eltwise"
bottom: "conv29"
bottom: "power24"
top: "mul9"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv30"
type: "Convolution"
bottom: "mul9"
top: "conv30"
convolution_param {
num_output: 80
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale30"
type: "Scale"
bottom: "conv30"
top: "conv30"
scale_param {
bias_term: true
}
}
layer {
name: "add7"
type: "Eltwise"
bottom: "add6"
bottom: "conv30"
top: "add7"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv31"
type: "Convolution"
bottom: "add7"
top: "conv31"
convolution_param {
num_output: 480
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale31"
type: "Scale"
bottom: "conv31"
top: "conv31"
scale_param {
bias_term: true
}
}
layer {
name: "power25"
type: "Power"
bottom: "conv31"
top: "power25"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus13"
type: "ReLU6"
bottom: "power25"
top: "relus13"
}
layer {
name: "power26"
type: "Power"
bottom: "relus13"
top: "power26"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul10"
type: "Eltwise"
bottom: "conv31"
bottom: "power26"
top: "mul10"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv32"
type: "DepthwiseConvolution"
bottom: "mul10"
top: "conv32"
convolution_param {
num_output: 480
bias_term: false
pad: 1
kernel_size: 3
group: 480
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale32"
type: "Scale"
bottom: "conv32"
top: "conv32"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool4"
type: "Pooling"
bottom: "conv32"
top: "ave_pool4"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route7"
type: "Concat"
bottom: "ave_pool4"
top: "route7"
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "route7"
top: "fc7"
inner_product_param {
num_output: 120
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu15"
type: "ReLU"
bottom: "fc7"
top: "relu15"
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "relu15"
top: "fc8"
inner_product_param {
num_output: 480
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power27"
type: "Power"
bottom: "fc8"
top: "power27"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus14"
type: "ReLU6"
bottom: "power27"
top: "relus14"
}
layer {
name: "power28"
type: "Power"
bottom: "relus14"
top: "power28"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route8"
type: "Concat"
bottom: "power28"
top: "route8"
}
layer {
name: "scale4"
type: "Scale"
bottom: "conv32"
bottom: "route8"
top: "scale4"
scale_param {
axis: 0
}
}
layer {
name: "power29"
type: "Power"
bottom: "scale4"
top: "power29"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus15"
type: "ReLU6"
bottom: "power29"
top: "relus15"
}
layer {
name: "power30"
type: "Power"
bottom: "relus15"
top: "power30"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul11"
type: "Eltwise"
bottom: "scale4"
bottom: "power30"
top: "mul11"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv33"
type: "Convolution"
bottom: "mul11"
top: "conv33"
convolution_param {
num_output: 112
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale33"
type: "Scale"
bottom: "conv33"
top: "conv33"
scale_param {
bias_term: true
}
}
layer {
name: "conv34"
type: "Convolution"
bottom: "conv33"
top: "conv34"
convolution_param {
num_output: 672
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale34"
type: "Scale"
bottom: "conv34"
top: "conv34"
scale_param {
bias_term: true
}
}
layer {
name: "power31"
type: "Power"
bottom: "conv34"
top: "power31"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus16"
type: "ReLU6"
bottom: "power31"
top: "relus16"
}
layer {
name: "power32"
type: "Power"
bottom: "relus16"
top: "power32"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul12"
type: "Eltwise"
bottom: "conv34"
bottom: "power32"
top: "mul12"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv35"
type: "DepthwiseConvolution"
bottom: "mul12"
top: "conv35"
convolution_param {
num_output: 672
bias_term: false
pad: 1
kernel_size: 3
group: 672
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale35"
type: "Scale"
bottom: "conv35"
top: "conv35"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool5"
type: "Pooling"
bottom: "conv35"
top: "ave_pool5"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route9"
type: "Concat"
bottom: "ave_pool5"
top: "route9"
}
layer {
name: "fc9"
type: "InnerProduct"
bottom: "route9"
top: "fc9"
inner_product_param {
num_output: 168
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu16"
type: "ReLU"
bottom: "fc9"
top: "relu16"
}
layer {
name: "fc10"
type: "InnerProduct"
bottom: "relu16"
top: "fc10"
inner_product_param {
num_output: 672
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power33"
type: "Power"
bottom: "fc10"
top: "power33"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus17"
type: "ReLU6"
bottom: "power33"
top: "relus17"
}
layer {
name: "power34"
type: "Power"
bottom: "relus17"
top: "power34"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route10"
type: "Concat"
bottom: "power34"
top: "route10"
}
layer {
name: "scale5"
type: "Scale"
bottom: "conv35"
bottom: "route10"
top: "scale5"
scale_param {
axis: 0
}
}
layer {
name: "power35"
type: "Power"
bottom: "scale5"
top: "power35"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus18"
type: "ReLU6"
bottom: "power35"
top: "relus18"
}
layer {
name: "power36"
type: "Power"
bottom: "relus18"
top: "power36"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul13"
type: "Eltwise"
bottom: "scale5"
bottom: "power36"
top: "mul13"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv36"
type: "Convolution"
bottom: "mul13"
top: "conv36"
convolution_param {
num_output: 112
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale36"
type: "Scale"
bottom: "conv36"
top: "conv36"
scale_param {
bias_term: true
}
}
layer {
name: "add8"
type: "Eltwise"
bottom: "conv33"
bottom: "conv36"
top: "add8"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv37"
type: "Convolution"
bottom: "add8"
top: "conv37"
convolution_param {
num_output: 672
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale37"
type: "Scale"
bottom: "conv37"
top: "conv37"
scale_param {
bias_term: true
}
}
layer {
name: "power37"
type: "Power"
bottom: "conv37"
top: "power37"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus19"
type: "ReLU6"
bottom: "power37"
top: "relus19"
}
layer {
name: "power38"
type: "Power"
bottom: "relus19"
top: "power38"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul14"
type: "Eltwise"
bottom: "conv37"
bottom: "power38"
top: "mul14"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv38"
type: "DepthwiseConvolution"
bottom: "mul14"
top: "conv38"
convolution_param {
num_output: 672
bias_term: false
pad: 2
kernel_size: 5
group: 672
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale38"
type: "Scale"
bottom: "conv38"
top: "conv38"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool6"
type: "Pooling"
bottom: "conv38"
top: "ave_pool6"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route11"
type: "Concat"
bottom: "ave_pool6"
top: "route11"
}
layer {
name: "fc11"
type: "InnerProduct"
bottom: "route11"
top: "fc11"
inner_product_param {
num_output: 168
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu17"
type: "ReLU"
bottom: "fc11"
top: "relu17"
}
layer {
name: "fc12"
type: "InnerProduct"
bottom: "relu17"
top: "fc12"
inner_product_param {
num_output: 672
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power39"
type: "Power"
bottom: "fc12"
top: "power39"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus20"
type: "ReLU6"
bottom: "power39"
top: "relus20"
}
layer {
name: "power40"
type: "Power"
bottom: "relus20"
top: "power40"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route12"
type: "Concat"
bottom: "power40"
top: "route12"
}
layer {
name: "scale6"
type: "Scale"
bottom: "conv38"
bottom: "route12"
top: "scale6"
scale_param {
axis: 0
}
}
layer {
name: "power41"
type: "Power"
bottom: "scale6"
top: "power41"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus21"
type: "ReLU6"
bottom: "power41"
top: "relus21"
}
layer {
name: "power42"
type: "Power"
bottom: "relus21"
top: "power42"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul15"
type: "Eltwise"
bottom: "scale6"
bottom: "power42"
top: "mul15"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv39"
type: "Convolution"
bottom: "mul15"
top: "conv39"
convolution_param {
num_output: 160
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale39"
type: "Scale"
bottom: "conv39"
top: "conv39"
scale_param {
bias_term: true
}
}
layer {
name: "conv40"
type: "Convolution"
bottom: "conv39"
top: "conv40"
convolution_param {
num_output: 672
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale40"
type: "Scale"
bottom: "conv40"
top: "conv40"
scale_param {
bias_term: true
}
}
layer {
name: "power43"
type: "Power"
bottom: "conv40"
top: "power43"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus22"
type: "ReLU6"
bottom: "power43"
top: "relus22"
}
layer {
name: "power44"
type: "Power"
bottom: "relus22"
top: "power44"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul16"
type: "Eltwise"
bottom: "conv40"
bottom: "power44"
top: "mul16"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv41"
type: "DepthwiseConvolution"
bottom: "mul16"
top: "conv41"
convolution_param {
num_output: 672
bias_term: false
pad: 2
kernel_size: 5
group: 672
stride: 2
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale41"
type: "Scale"
bottom: "conv41"
top: "conv41"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool7"
type: "Pooling"
bottom: "conv41"
top: "ave_pool7"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route13"
type: "Concat"
bottom: "ave_pool7"
top: "route13"
}
layer {
name: "fc13"
type: "InnerProduct"
bottom: "route13"
top: "fc13"
inner_product_param {
num_output: 168
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu18"
type: "ReLU"
bottom: "fc13"
top: "relu18"
}
layer {
name: "fc14"
type: "InnerProduct"
bottom: "relu18"
top: "fc14"
inner_product_param {
num_output: 672
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power45"
type: "Power"
bottom: "fc14"
top: "power45"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus23"
type: "ReLU6"
bottom: "power45"
top: "relus23"
}
layer {
name: "power46"
type: "Power"
bottom: "relus23"
top: "power46"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route14"
type: "Concat"
bottom: "power46"
top: "route14"
}
layer {
name: "scale7"
type: "Scale"
bottom: "conv41"
bottom: "route14"
top: "scale7"
scale_param {
axis: 0
}
}
layer {
name: "power47"
type: "Power"
bottom: "scale7"
top: "power47"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus24"
type: "ReLU6"
bottom: "power47"
top: "relus24"
}
layer {
name: "power48"
type: "Power"
bottom: "relus24"
top: "power48"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul17"
type: "Eltwise"
bottom: "scale7"
bottom: "power48"
top: "mul17"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv42"
type: "Convolution"
bottom: "mul17"
top: "conv42"
convolution_param {
num_output: 160
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale42"
type: "Scale"
bottom: "conv42"
top: "conv42"
scale_param {
bias_term: true
}
}
layer {
name: "conv43"
type: "Convolution"
bottom: "conv42"
top: "conv43"
convolution_param {
num_output: 960
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale43"
type: "Scale"
bottom: "conv43"
top: "conv43"
scale_param {
bias_term: true
}
}
layer {
name: "power49"
type: "Power"
bottom: "conv43"
top: "power49"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus25"
type: "ReLU6"
bottom: "power49"
top: "relus25"
}
layer {
name: "power50"
type: "Power"
bottom: "relus25"
top: "power50"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul18"
type: "Eltwise"
bottom: "conv43"
bottom: "power50"
top: "mul18"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv44"
type: "DepthwiseConvolution"
bottom: "mul18"
top: "conv44"
convolution_param {
num_output: 960
bias_term: false
pad: 2
kernel_size: 5
group: 960
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale44"
type: "Scale"
bottom: "conv44"
top: "conv44"
scale_param {
bias_term: true
}
}
layer {
name: "ave_pool8"
type: "Pooling"
bottom: "conv44"
top: "ave_pool8"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "route15"
type: "Concat"
bottom: "ave_pool8"
top: "route15"
}
layer {
name: "fc15"
type: "InnerProduct"
bottom: "route15"
top: "fc15"
inner_product_param {
num_output: 240
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu19"
type: "ReLU"
bottom: "fc15"
top: "relu19"
}
layer {
name: "fc16"
type: "InnerProduct"
bottom: "relu19"
top: "fc16"
inner_product_param {
num_output: 960
bias_term: true
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "power51"
type: "Power"
bottom: "fc16"
top: "power51"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus26"
type: "ReLU6"
bottom: "power51"
top: "relus26"
}
layer {
name: "power52"
type: "Power"
bottom: "relus26"
top: "power52"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "route16"
type: "Concat"
bottom: "power52"
top: "route16"
}
layer {
name: "scale8"
type: "Scale"
bottom: "conv44"
bottom: "route16"
top: "scale8"
scale_param {
axis: 0
}
}
layer {
name: "power53"
type: "Power"
bottom: "scale8"
top: "power53"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus27"
type: "ReLU6"
bottom: "power53"
top: "relus27"
}
layer {
name: "power54"
type: "Power"
bottom: "relus27"
top: "power54"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul19"
type: "Eltwise"
bottom: "scale8"
bottom: "power54"
top: "mul19"
eltwise_param {
operation: PROD
}
}
layer {
name: "conv45"
type: "Convolution"
bottom: "mul19"
top: "conv45"
convolution_param {
num_output: 160
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale45"
type: "Scale"
bottom: "conv45"
top: "conv45"
scale_param {
bias_term: true
}
}
layer {
name: "add9"
type: "Eltwise"
bottom: "conv42"
bottom: "conv45"
top: "add9"
eltwise_param {
operation: SUM
}
}
layer {
name: "conv46"
type: "Convolution"
bottom: "add9"
top: "conv46"
convolution_param {
num_output: 960
bias_term: false
pad: 0
kernel_size: 1
group: 1
stride: 1
weight_filler {
type: "xavier"
}
dilation: 1
}
}
layer {
name: "bn_scale46"
type: "Scale"
bottom: "conv46"
top: "conv46"
scale_param {
bias_term: true
}
}
layer {
name: "power55"
type: "Power"
bottom: "conv46"
top: "power55"
power_param {
power: 1.0
scale: 1.0
shift: 3.0
}
}
layer {
name: "relus28"
type: "ReLU6"
bottom: "power55"
top: "relus28"
}
layer {
name: "power56"
type: "Power"
bottom: "relus28"
top: "power56"
power_param {
power: 1.0
scale: 0.1666666716337204
shift: 0.0
}
}
layer {
name: "mul20"
type: "Eltwise"
bottom: "conv46"
bottom: "power56"
top: "mul20"
eltwise_param {
operation: PROD
}
}

layer {
name: "yolo/conv1/dw"
type: "DepthwiseConvolution"
bottom: "mul20"
top: "yolo/conv1/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
pad: 1
kernel_size: 3
group: 960
engine: CAFFE
weight_filler {
type: "msra"
}
}
}

layer {
name: "yolo/conv1/dw/scale"
type: "Scale"
bottom: "yolo/conv1/dw"
top: "yolo/conv1/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv1/dw/relu"
type: "ReLU"
bottom: "yolo/conv1/dw"
top: "yolo/conv1/dw"
}
layer {
name: "yolo/conv1"
type: "Convolution"
bottom: "yolo/conv1/dw"
top: "yolo/conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 672
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "yolo/conv1/scale"
type: "Scale"
bottom: "yolo/conv1"
top: "yolo/conv1"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv1/relu"
type: "ReLU"
bottom: "yolo/conv1"
top: "yolo/conv1"
}
layer {
name: "upsample"
type: "Deconvolution"
bottom: "yolo/conv1"
top: "upsample"
param { lr_mult: 0 decay_mult: 0 }
convolution_param {
num_output: 672
group: 672
kernel_size: 1 stride: 2 pad: 0
weight_filler: {
type: "constant"
value : 1
}
bias_term: false
}
}

layer {
top: "maxpool"
name: "maxpool"
bottom: "upsample"
type: "Pooling"
pooling_param {
kernel_size: 2
stride: 1
pool: MAX
pad: 1
}
}
layer {
name: "yolo/conv2/dw"
type: "DepthwiseConvolution"
bottom: "mul16"
top: "yolo/conv2/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 672
bias_term: false
pad: 1
kernel_size: 3
group: 672
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "yolo/conv2/dw/scale"
type: "Scale"
bottom: "yolo/conv2/dw"
top: "yolo/conv2/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv2/dw/relu"
type: "ReLU"
bottom: "yolo/conv2/dw"
top: "yolo/conv2/dw"
}
layer {
name: "yolo/conv2"
type: "Convolution"
bottom: "yolo/conv2/dw"
top: "yolo/conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 672
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "yolo/conv2/scale"
type: "Scale"
bottom: "yolo/conv2"
top: "yolo/conv2"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv2/relu"
type: "ReLU"
bottom: "yolo/conv2"
top: "yolo/conv2"
}
layer {
name: "yolo/conv2/sum"
type: "Eltwise"
bottom: "maxpool"
bottom: "yolo/conv2"
top: "yolo/conv2/sum"
}

layer {
name: "yolo/conv3/dw"
type: "DepthwiseConvolution"
bottom: "yolo/conv2/sum"
top: "yolo/conv3/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 672
bias_term: false
pad: 1
kernel_size: 3
group: 672
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "yolo/conv3/dw/scale"
type: "Scale"
bottom: "yolo/conv3/dw"
top: "yolo/conv3/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv3/dw/relu"
type: "ReLU"
bottom: "yolo/conv3/dw"
top: "yolo/conv3/dw"
}
layer {
name: "yolo/conv3"
type: "Convolution"
bottom: "yolo/conv3/dw"
top: "yolo/conv3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 672
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "yolo/conv3/scale"
type: "Scale"
bottom: "yolo/conv3"
top: "yolo/conv3"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "yolo/conv3/relu"
type: "ReLU"
bottom: "yolo/conv3"
top: "yolo/conv3"
}
layer {
name: "yolo/conv4"
type: "Convolution"
bottom: "yolo/conv1"
top: "yolo/conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 18
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "yolo/conv5"
type: "Convolution"
bottom: "yolo/conv3"
top: "yolo/conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 18
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}
layer {
name: "detection_out"
type: "Yolov3DetectionOutput"
bottom: "yolo/conv4"
bottom: "yolo/conv5"
top: "detection_out"
yolov3_detection_output_param {
confidence_threshold: 0.01
nms_threshold: 0.45
num_classes: 1

#10,14,  23,27,  37,58,  81,82,  135,169,  344,319
biases: 18
biases: 34
biases: 45
biases: 84
biases: 65
biases: 181
biases: 141
biases: 111
biases: 129
biases: 241
biases: 254
biases: 254

mask:3
mask:4
mask:5	
mask:0
mask:1
mask:2
anchors_scale:32
anchors_scale:16
mask_group_num:2

}
}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant