-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentence_classification.py
329 lines (280 loc) · 12.8 KB
/
sentence_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import nemo
from nemo.utils.lr_policies import get_lr_policy
import nemo_nlp
from nemo_nlp.data.datasets.utils import SentenceClassificationDataDesc
from nemo_nlp.utils.callbacks.sentence_classification import \
eval_iter_callback, eval_epochs_done_callback
from nemo.core import NeuralModuleFactory
from nemo.backends.pytorch.common import CrossEntropyLoss
from pytorch_transformers import BertTokenizer
import torch.nn.functional as f
import math
import numpy as np
import pandas as pd
pd.options.display.max_colwidth = -1
import json
import argparse
import preproc_data_layer
def parse_args():
parser = argparse.ArgumentParser(description="Classify sentences with BERT Fine-tuning")
# Parsing arguments
parser.add_argument("--train_file", default=None, type=str,
help="The input should contain the .tsv \
formatted with the header 'sentence\tlabel'. \
Weights will be optimized using this data.")
parser.add_argument("--eval_file", default=None, type=str,
help="The input should contain the .tsv \
formatted with the header 'sentence\tlabel'. \
Weights not optimized, loss computed.")
parser.add_argument("--inference_file", default=None, type=str,
help="The input should contain the .tsv \
formatted with the header 'sentence\tlabel'. \
Weights not optimized, loss not computed.")
parser.add_argument("--pretrained_bert_model", default="bert-base-uncased",
type=str, help="Name of the pre-trained model")
parser.add_argument("--bert_checkpoint", default=None, type=str,
help="Path to bert model checkpoint")
parser.add_argument("--bert_config", default=None, type=str,
help="Path to bert config file in json format")
parser.add_argument("--tokenizer_model", default="tokenizer.model", type=str,
help="Path to pretrained tokenizer model, \
only used if --tokenizer is sentencepiece")
parser.add_argument("--tokenizer", default="nemobert", type=str,
choices=["nemobert", "sentencepiece"],
help="tokenizer to use, \
only relevant when using custom pretrained checkpoint.")
parser.add_argument("--max_seq_length", default=128, type=int,
choices=range(1, 513),
help="The maximum total input sequence length after \
tokenization.Sequences longer than this will be \
truncated, sequences shorter will be padded.")
parser.add_argument("--mlp_checkpoint", default=None, type=str,
help="Path to mlp model checkpoint")
parser.add_argument("--optimizer_kind", default="adam", type=str,
help="Optimizer kind")
parser.add_argument("--lr_policy", default="WarmupAnnealing", type=str)
parser.add_argument("--lr", default=5e-5, type=float,
help="The initial learning rate.")
parser.add_argument("--lr_warmup_proportion", default=0.1, type=float)
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--num_epochs", default=3, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--batch_size", default=8, type=int,
help="Batch size per GPU for training, evaluation, and inference.")
parser.add_argument("--num_gpus", default=1, type=int,
help="Number of GPUs")
parser.add_argument("--amp_opt_level", default="O0", type=str,
choices=["O0", "O1", "O2"],
help="O1/O2 to enable mixed precision")
parser.add_argument("--local_rank", type=int, default=None,
help="For torch distributed training: local_rank (see torch.distributed.launch)")
parser.add_argument("--work_dir", default='work_dir/', type=str,
help="The output directory where the model predictions \
and checkpoints will be written.")
parser.add_argument("--save_epoch_freq", default=1, type=int,
help="Frequency of saving checkpoint \
'-1' - epoch checkpoint won't be saved")
parser.add_argument("--save_step_freq", default=-1, type=int,
help="Frequency of saving checkpoint \
'-1' - step checkpoint won't be saved")
parser.add_argument("--num_checkpoints", default=3, type=int,
help="The number of checkpoints to keep. -1 to keep all")
parser.add_argument("--loss_step_freq", default=1, type=int,
help="Frequency of printing loss")
parser.add_argument("--mode", default='train', type=str,
choices=["train", "eval", "inference"],
help="Type of pipeline")
parser.add_argument("--num_classes", default=None, type=int, required=True,
help="Number of classes to be classified")
parser.add_argument("--dropout", default=0.1, type=float,
help="Dropout for mlp layers")
parser.add_argument("--num_layers", default=1, type=int,
help="Number of layers in MLP")
parser.add_argument("--num_samples", default=-1, type=int,
help="Used to reduce dataset size. -1 for all dataset")
parser.add_argument("--preproc", default=False, action='store_true',
help="Use preprocessed data.")
args = parser.parse_args()
return args
def create_pipeline(
nf,
data_layer,
bert_model,
mlp,
loss_fn):
tokens, token_types, attn_mask, labels = data_layer()
embeddings = bert_model(
input_ids=tokens,
token_type_ids=token_types,
attention_mask=attn_mask)
logits = mlp(hidden_states=embeddings)
if loss_fn:
loss = loss_fn(logits=logits, labels=labels)
else:
loss = None
num_gpus = nf.world_size
batch_size = data_layer.local_parameters['batch_size']
steps_per_epoch = len(data_layer) // (batch_size * num_gpus)
return logits, loss, steps_per_epoch, labels
def sentence_classification(args):
# TODO: construct name of experiment based on args
"""
name = construct_name(
args.exp_name,
args.lr,
args.batch_size,
args.num_epochs,
args.weight_decay,
args.optimizer)
work_dir = name
if args.work_dir:
work_dir = os.path.join(args.work_dir, name)
"""
# Instantiate neural modules
nf = NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=args.work_dir,
create_tb_writer=True,
files_to_copy=[__file__],
add_time_to_log_dir=True)
# Pre-trained BERT
tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model)
if args.bert_checkpoint is None:
bert = nemo_nlp.BERT(pretrained_model_name=args.pretrained_bert_model)
# save bert config for inference after fine-tuning
bert_config = bert.config.to_dict()
with open(args.work_dir + '/' + args.pretrained_bert_model + '_config.json', 'w+') as json_file:
json.dump(bert_config, json_file)
else:
if args.bert_config is not None:
with open(args.bert_config) as json_file:
bert_config = json.load(json_file)
bert = nemo_nlp.BERT(**bert_config)
bert.restore_from(args.bert_checkpoint)
# MLP
bert_hidden_size = bert.local_parameters['hidden_size']
mlp = nemo_nlp.SequenceClassifier(
hidden_size=bert_hidden_size,
num_classes=args.num_classes,
num_layers=args.num_layers,
log_softmax=False,
dropout=args.dropout)
# TODO: save mlp/all model configs (bake in to Neural Module?)
if args.mlp_checkpoint:
mlp.restore_from(args.mlp_checkpoint)
# Loss function for classification
loss_fn = CrossEntropyLoss()
# Data layers, pipelines, and callbacks
callbacks = [] # callbacks depend on files present
if args.train_file:
if args.preproc:
train_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
input_file=args.train_file,
shuffle=True,
num_samples=args.num_samples, # lower for dev, -1 for all dataset
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
else:
train_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
input_file=args.train_file,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
shuffle=True,
num_samples=args.num_samples, # lower for dev, -1 for all dataset
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
train_logits, train_loss, steps_per_epoch, train_labels = create_pipeline(
nf,
train_data_layer,
bert,
mlp,
loss_fn)
train_callback = nemo.core.SimpleLossLoggerCallback(
tensors=[train_loss, train_logits],
print_func=lambda x: nf.logger.info(f'Train loss: {str(np.round(x[0].item(), 3))}'),
tb_writer=nf.tb_writer,
get_tb_values=lambda x: [["train_loss", x[0]]],
step_freq=steps_per_epoch)
callbacks.append(train_callback)
if args.num_checkpoints != 0:
ckpt_callback = nemo.core.CheckpointCallback(
folder=nf.checkpoint_dir,
epoch_freq=args.save_epoch_freq,
step_freq=args.save_step_freq,
checkpoints_to_keep=args.num_checkpoints)
callbacks.append(ckpt_callback)
if args.eval_file:
if args.preproc:
eval_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
input_file=args.eval_file,
shuffle=False,
num_samples=args.num_samples,
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
else:
eval_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
input_file=args.eval_file,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
shuffle=False,
num_samples=args.num_samples,
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
eval_logits, eval_loss, _, eval_labels = create_pipeline(
nf,
eval_data_layer,
bert,
mlp,
loss_fn)
eval_callback = nemo.core.EvaluatorCallback(
eval_tensors=[eval_logits, eval_labels],
user_iter_callback=lambda x, y: eval_iter_callback(
x, y, eval_data_layer),
user_epochs_done_callback=lambda x: eval_epochs_done_callback(
x, f'{nf.work_dir}/graphs'),
tb_writer=nf.tb_writer,
eval_step=steps_per_epoch)
callbacks.append(eval_callback)
if args.inference_file:
if args.preproc:
inference_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
input_file=args.inference_file,
shuffle=False,
num_samples=args.num_samples,
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
else:
inference_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
input_file=args.inference_file,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
shuffle=False,
num_samples=args.num_samples,
batch_size=args.batch_size,
num_workers=0,
local_rank=args.local_rank)
# TODO: Finish inference
inference_callback = None
# Training, eval and inference
if args.train_file:
lr_policy_fn = get_lr_policy(
args.lr_policy,
total_steps=args.num_epochs * steps_per_epoch,
warmup_ratio=args.lr_warmup_proportion)
nf.train(
tensors_to_optimize=[train_loss],
callbacks=callbacks,
lr_policy=lr_policy_fn,
optimizer=args.optimizer_kind,
optimization_params={'num_epochs': args.num_epochs, 'lr': args.lr})
if __name__ == '__main__':
args = parse_args()
sentence_classification(args)