-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_predictor.py
58 lines (51 loc) · 1.78 KB
/
train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from fluidestimator.config import get_cfg
from fluidestimator.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from fluidestimator.evaluation import DatasetEvaluators, PIV2DEvaluator, PIVFoamEvaluator
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
if dataset_name == 'PIV2D':
evaluator_list.append(PIV2DEvaluator(dataset_name, output_dir=output_folder))
if dataset_name == 'PIVFoam':
evaluator_list.append(PIVFoamEvaluator(dataset_name, output_dir=output_folder))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} ".format(
dataset_name
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
args.resume = True
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)