-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathEDSunriseSet.m
447 lines (368 loc) · 17.8 KB
/
EDSunriseSet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//
// EDSunriseSet.m
//
// Created by Ernesto García on 20/08/11.
// Copyright 2011 Ernesto García. All rights reserved.
//
// C/C++ sun calculations created by Paul Schlyter
// sunriset.c
// http://stjarnhimlen.se/english.html
// SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
// the length of the day at any date and latitude
// Written as DAYLEN.C, 1989-08-16
// Modified to SUNRISET.C, 1992-12-01
// (c) Paul Schlyter, 1989, 1992
// Released to the public domain by Paul Schlyter, December 1992
//
#import "EDSunriseSet.h"
//
// Defines from sunriset.c
//
#define INV360 ( 1.0 / 360.0 )
#define RADEG ( 180.0 / M_PI )
#define DEGRAD ( M_PI / 180.0 )
/* The trigonometric functions in degrees */
#define sind(x) sin((x)*DEGRAD)
#define cosd(x) cos((x)*DEGRAD)
#define tand(x) tan((x)*DEGRAD)
#define atand(x) (RADEG*atan(x))
#define asind(x) (RADEG*asin(x))
#define acosd(x) (RADEG*acos(x))
#define atan2d(y,x) (RADEG*atan2(y,x))
/* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
/* (which is equal to 1999 Dec 31, 0h UT) */
#define days_since_2000_Jan_0(y,m,d) \
(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
#if defined(__IPHONE_8_0) || defined (__MAC_10_10)
#define EDGregorianCalendar NSCalendarIdentifierGregorian
#else
#define EDGregorianCalendar NSGregorianCalendar
#endif
#pragma mark - Readwrite accessors only private
@interface EDSunriseSet()
@property (nonatomic) double latitude;
@property (nonatomic) double longitude;
@property (nonatomic, strong) NSTimeZone *timezone;
@property (nonatomic, strong) NSCalendar *calendar;
@property (nonatomic, strong) NSTimeZone *utcTimeZone;
@property (readwrite, strong) NSDate *date;
@property (readwrite, strong) NSDate *sunset;
@property (readwrite, strong) NSDate *sunrise;
@property (readwrite, strong) NSDate *civilTwilightStart;
@property (readwrite, strong) NSDate *civilTwilightEnd;
@property (readwrite, strong) NSDate *nauticalTwilightStart;
@property (readwrite, strong) NSDate *nauticalTwilightEnd;
@property (readwrite, strong) NSDate *astronomicalTwilightStart;
@property (readwrite, strong) NSDate *astronomicalTwilightEnd;
@property (readwrite, strong) NSDateComponents* localSunrise;
@property (readwrite, strong) NSDateComponents* localSunset;
@property (readwrite, strong) NSDateComponents* localCivilTwilightStart;
@property (readwrite, strong) NSDateComponents* localCivilTwilightEnd;
@property (readwrite, strong) NSDateComponents* localNauticalTwilightStart;
@property (readwrite, strong) NSDateComponents* localNauticalTwilightEnd;
@property (readwrite, strong) NSDateComponents* localAstronomicalTwilightStart;
@property (readwrite, strong) NSDateComponents* localAstronomicalTwilightEnd;
@end
#pragma mark - Calculations from sunriset.c
@implementation EDSunriseSet(Calculations)
/*****************************************/
/* Reduce angle to within 0..360 degrees */
/*****************************************/
-(double) revolution:(double) x
{
return( x - 360.0 * floor( x * INV360 ) );
}
/*********************************************/
/* Reduce angle to within -180..+180 degrees */
/*********************************************/
-(double) rev180:(double) x
{
return( x - 360.0 * floor( x * INV360 + 0.5 ) );
}
-(double) GMST0:(double) d
{
double sidtim0;
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
/* add these numbers, I'll let the C compiler do it for me. */
/* Any decent C compiler will add the constants at compile */
/* time, imposing no runtime or code overhead. */
sidtim0 = [self revolution: ( 180.0 + 356.0470 + 282.9404 ) +
( 0.9856002585 + 4.70935E-5 ) * d];
return sidtim0;
}
/******************************************************/
/* Computes the Sun's ecliptic longitude and distance */
/* at an instant given in d, number of days since */
/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
/* computed, since it's always very near 0. */
/******************************************************/
-(void) sunposAtDay:(double)d longitude:(double*)lon r:(double *)r
{
double M, /* Mean anomaly of the Sun */
w, /* Mean longitude of perihelion */
/* Note: Sun's mean longitude = M + w */
e, /* Eccentricity of Earth's orbit */
E, /* Eccentric anomaly */
x, y, /* x, y coordinates in orbit */
v; /* True anomaly */
/* Compute mean elements */
M = [self revolution:( 356.0470 + 0.9856002585 * d )];
w = 282.9404 + 4.70935E-5 * d;
e = 0.016709 - 1.151E-9 * d;
/* Compute true longitude and radius vector */
E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
x = cosd(E) - e;
y = sqrt( 1.0 - e*e ) * sind(E);
*r = sqrt( x*x + y*y ); /* Solar distance */
v = atan2d( y, x ); /* True anomaly */
*lon = v + w; /* True solar longitude */
if ( *lon >= 360.0 )
*lon -= 360.0; /* Make it 0..360 degrees */
}
-(void) sun_RA_decAtDay:(double)d RA:(double*)RA decl:(double *)dec r:(double *)r
{
double lon, obl_ecl;
double xs, ys, zs;
double xe, ye, ze;
/* Compute Sun's ecliptical coordinates */
//sunpos( d, &lon, r );
[self sunposAtDay:d longitude:&lon r:r];
/* Compute ecliptic rectangular coordinates */
xs = *r * cosd(lon);
ys = *r * sind(lon);
zs = 0; /* because the Sun is always in the ecliptic plane! */
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Convert to equatorial rectangular coordinates - x is unchanged */
xe = xs;
ye = ys * cosd(obl_ecl);
ze = ys * sind(obl_ecl);
/* Convert to spherical coordinates */
*RA = atan2d( ye, xe );
*dec = atan2d( ze, sqrt(xe*xe + ye*ye) );
} /* sun_RA_dec */
#define sun_rise_set(year,month,day,lon,lat,rise,set) \
__sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set )
-(int)sunRiseSetForYear:(int)year month:(int)month day:(int)day longitude:(double)lon latitude:(double)lat
trise:(double *)trise tset:(double *)tset
{
return [self sunRiseSetHelperForYear:year month:month day:day longitude:lon latitude:lat altitude:(-35.0/60.0)
upper_limb:1 trise:trise tset:tset];
}
/*
#define civil_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -6.0, 0, start, end )
*/
-(int) civilTwilightForYear:(int)year month:(int)month day:(int)day longitude:(double)lon latitude:(double)lat
trise:(double *)trise tset:(double *)tset
{
return [self sunRiseSetHelperForYear:year month:month day:day longitude:lon latitude:lat altitude:-6.0
upper_limb:0 trise:trise tset:tset];
}
/*
#define nautical_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -12.0, 0, start, end )
*/
-(int) nauticalTwilightForYear:(int)year month:(int)month day:(int)day longitude:(double)lon latitude:(double)lat
trise:(double *)trise tset:(double *)tset
{
return [self sunRiseSetHelperForYear:year month:month day:day longitude:lon latitude:lat altitude:-12.0
upper_limb:0 trise:trise tset:tset];
}
/*
#define astronomical_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -18.0, 0, start, end )
*/
-(int) astronomicalTwilightForYear:(int)year month:(int)month day:(int)day longitude:(double)lon latitude:(double)lat
trise:(double *)trise tset:(double *)tset
{
return [self sunRiseSetHelperForYear:year month:month day:day longitude:lon latitude:lat altitude:-18.0
upper_limb:0 trise:trise tset:tset];
}
/***************************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only. */
/* Eastern longitude positive, Western longitude negative */
/* Northern latitude positive, Southern latitude negative */
/* The longitude value IS critical in this function! */
/* altit = the altitude which the Sun should cross */
/* Set to -35/60 degrees for rise/set, -6 degrees */
/* for civil, -12 degrees for nautical and -18 */
/* degrees for astronomical twilight. */
/* upper_limb: non-zero -> upper limb, zero -> center */
/* Set to non-zero (e.g. 1) when computing rise/set */
/* times, and to zero when computing start/end of */
/* twilight. */
/* *rise = where to store the rise time */
/* *set = where to store the set time */
/* Both times are relative to the specified altitude, */
/* and thus this function can be used to comupte */
/* various twilight times, as well as rise/set times */
/* Return value: 0 = sun rises/sets this day, times stored at */
/* *trise and *tset. */
/* +1 = sun above the specified "horizon" 24 hours. */
/* *trise set to time when the sun is at south, */
/* minus 12 hours while *tset is set to the south */
/* time plus 12 hours. "Day" length = 24 hours */
/* -1 = sun is below the specified "horizon" 24 hours */
/* "Day" length = 0 hours, *trise and *tset are */
/* both set to the time when the sun is at south. */
/* */
/**********************************************************************/
-(int)sunRiseSetHelperForYear:(int)year month:(int)month day:(int)day longitude:(double)lon latitude:(double)lat
altitude:(double)altit upper_limb:(int)upper_limb trise:(double *)trise tset:(double *)tset
{
double d, /* Days since 2000 Jan 0.0 (negative before) */
sr, /* Solar distance, astronomical units */
sRA, /* Sun's Right Ascension */
sdec, /* Sun's declination */
sradius, /* Sun's apparent radius */
t, /* Diurnal arc */
tsouth, /* Time when Sun is at south */
sidtime; /* Local sidereal time */
int rc = 0; /* Return cde from function - usually 0 */
/* Compute d of 12h local mean solar time */
d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
/* Compute local sideral time of this moment */
//sidtime = revolution( GMST0(d) + 180.0 + lon );
sidtime = [self revolution:[self GMST0:d] + 180.0 + lon];
/* Compute Sun's RA + Decl at this moment */
//sun_RA_dec( d, &sRA, &sdec, &sr );
[self sun_RA_decAtDay:d RA: &sRA decl:&sdec r:&sr];
/* Compute time when Sun is at south - in hours UT */
//tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
tsouth = 12.0 - [self rev180:sidtime - sRA] / 15.0;
/* Compute the Sun's apparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if ( upper_limb )
altit -= sradius;
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitide altit: */
{
double cost;
cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
( cosd(lat) * cosd(sdec) );
if ( cost >= 1.0 )
rc = -1, t = 0.0; /* Sun always below altit */
else if ( cost <= -1.0 )
rc = +1, t = 12.0; /* Sun always above altit */
else
t = acosd(cost)/15.0; /* The diurnal arc, hours */
}
/* Store rise and set times - in hours UT */
*trise = tsouth - t;
*tset = tsouth + t;
return rc;
} /* __sunriset__ */
@end
#pragma mark - Private Implementation
@implementation EDSunriseSet(Private)
static const int kSecondsInHour= 60.0*60.0;
-(NSDate*)utcTime:(NSDateComponents*)dateComponents withOffset:(NSTimeInterval)interval
{
[self.calendar setTimeZone:self.utcTimeZone];
return [[self.calendar dateFromComponents:dateComponents] dateByAddingTimeInterval:(NSTimeInterval)(interval)];
}
-(NSDateComponents*)localTime:(NSDate*)refDate
{
[self.calendar setTimeZone:self.timezone];
// Return only hour, minute, seconds
NSDateComponents *dc = [self.calendar components:( NSCalendarUnitHour | NSCalendarUnitMinute | NSCalendarUnitSecond) fromDate:refDate] ;
return dc;
}
- (instancetype) init {
[super doesNotRecognizeSelector:_cmd];
return nil;
}
-(NSString *)description
{
return [NSString stringWithFormat:
@"Date: %@\nTimeZone: %@\n"
@"Local Sunrise: %@\n"
@"Local Sunset: %@\n"
@"Local Civil Twilight Start: %@\n"
@"Local Civil Twilight End: %@\n"
@"Local Nautical Twilight Start: %@\n"
@"Local Nautical Twilight End: %@\n"
@"Local Astronomical Twilight Start: %@\n"
@"Local Astronomical Twilight End: %@\n",
self.date.description, self.timezone.name,
self.localSunrise.description, self.localSunset.description,
self.localCivilTwilightStart, self.localCivilTwilightEnd,
self.localNauticalTwilightStart, self.localNauticalTwilightEnd,
self.localAstronomicalTwilightStart, self.localAstronomicalTwilightEnd
];
}
#pragma mark - Calculation methods
-(void)calculateSunriseSunset
{
// Get date components
[self.calendar setTimeZone:self.timezone];
NSDateComponents *dateComponents = [self.calendar components:( NSCalendarUnitYear | NSCalendarUnitMonth | NSCalendarUnitDay ) fromDate:self.date];
// Calculate sunrise and sunset
double rise=0.0, set=0.0;
[self sunRiseSetForYear:(int)[dateComponents year] month:(int)[dateComponents month] day:(int)[dateComponents day] longitude:self.longitude latitude:self.latitude
trise:&rise tset:&set ];
NSTimeInterval secondsRise = rise*kSecondsInHour;
NSTimeInterval secondsSet = set*kSecondsInHour;
self.sunrise = [self utcTime:dateComponents withOffset:(NSTimeInterval)secondsRise];
self.sunset = [self utcTime:dateComponents withOffset:(NSTimeInterval)secondsSet];
self.localSunrise = [self localTime:self.sunrise];
self.localSunset = [self localTime:self.sunset];
}
-(void)calculateTwilight
{
// Get date components
[self.calendar setTimeZone:self.timezone];
NSDateComponents *dateComponents = [self.calendar components:( NSCalendarUnitYear | NSCalendarUnitMonth | NSCalendarUnitDay ) fromDate:self.date];
double start=0.0, end=0.0;
// Civil twilight
[self civilTwilightForYear:(int)[dateComponents year] month:(int)[dateComponents month] day:(int)[dateComponents day] longitude:self.longitude latitude:self.latitude
trise:&start tset:&end ];
self.civilTwilightStart = [self utcTime:dateComponents withOffset:(NSTimeInterval)(start*kSecondsInHour)];
self.civilTwilightEnd = [self utcTime:dateComponents withOffset:(NSTimeInterval)(end*kSecondsInHour)];
self.localCivilTwilightStart = [self localTime:self.civilTwilightStart];
self.localCivilTwilightEnd = [self localTime:self.civilTwilightEnd];
// Nautical twilight
[self nauticalTwilightForYear:(int)[dateComponents year] month:(int)[dateComponents month] day:(int)[dateComponents day] longitude:self.longitude latitude:self.latitude
trise:&start tset:&end ];
self.nauticalTwilightStart = [self utcTime:dateComponents withOffset:(NSTimeInterval)(start*kSecondsInHour)];
self.nauticalTwilightEnd = [self utcTime:dateComponents withOffset:(NSTimeInterval)(end*kSecondsInHour)];
self.localNauticalTwilightStart = [self localTime:self.nauticalTwilightStart];
self.localNauticalTwilightEnd = [self localTime:self.nauticalTwilightEnd];
// Astronomical twilight
[self astronomicalTwilightForYear:(int)[dateComponents year] month:(int)[dateComponents month] day:(int)[dateComponents day] longitude:self.longitude latitude:self.latitude
trise:&start tset:&end ];
self.astronomicalTwilightStart = [self utcTime:dateComponents withOffset:(NSTimeInterval)(start*kSecondsInHour)];
self.astronomicalTwilightEnd = [self utcTime:dateComponents withOffset:(NSTimeInterval)(end*kSecondsInHour)];
self.localAstronomicalTwilightStart = [self localTime:self.astronomicalTwilightStart];
self.localAstronomicalTwilightEnd = [self localTime:self.astronomicalTwilightEnd];
}
-(void)calculate
{
[self calculateSunriseSunset];
[self calculateTwilight];
}
@end
#pragma mark - Public Implementation
@implementation EDSunriseSet
#pragma mark - Initialization
-(EDSunriseSet*)initWithDate:(NSDate*)date timezone:(NSTimeZone*)tz latitude:(double)latitude longitude:(double)longitude {
self = [super init];
if( self )
{
self.latitude = latitude;
self.longitude = longitude;
self.timezone = tz;
self.date = date;
self.calendar = [[NSCalendar alloc] initWithCalendarIdentifier:EDGregorianCalendar];
self.utcTimeZone = [NSTimeZone timeZoneWithAbbreviation:@"UTC"];
[self calculate];
}
return self;
}
+(EDSunriseSet*)sunrisesetWithDate:(NSDate*)date timezone:(NSTimeZone*)tz latitude:(double)latitude longitude:(double)longitude {
return [[EDSunriseSet alloc] initWithDate:date timezone:tz latitude:latitude longitude:longitude];
}
@end