-
Notifications
You must be signed in to change notification settings - Fork 0
/
ltrace-elf.c
979 lines (859 loc) · 25.2 KB
/
ltrace-elf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*
* This file is part of ltrace.
* Copyright (C) 2006,2010,2011,2012 Petr Machata, Red Hat Inc.
* Copyright (C) 2010 Zachary T Welch, CodeSourcery
* Copyright (C) 2010 Joe Damato
* Copyright (C) 1997,1998,2001,2004,2007,2008,2009 Juan Cespedes
* Copyright (C) 2006 Olaf Hering, SUSE Linux GmbH
* Copyright (C) 2006 Eric Vaitl, Cisco Systems, Inc.
* Copyright (C) 2006 Paul Gilliam, IBM Corporation
* Copyright (C) 2006 Ian Wienand
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include "config.h"
#include <assert.h>
#ifdef __linux__
#include <endian.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <gelf.h>
#include <inttypes.h>
#include <search.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include "backend.h"
#include "filter.h"
#include "library.h"
#include "ltrace-elf.h"
#include "proc.h"
#include "debug.h"
#include "options.h"
#ifndef ARCH_HAVE_LTELF_DATA
int
arch_elf_init(struct ltelf *lte, struct library *lib)
{
return 0;
}
void
arch_elf_destroy(struct ltelf *lte)
{
}
#endif
int
default_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
const char *a_name, GElf_Rela *rela, size_t ndx,
struct library_symbol **ret)
{
char *name = strdup(a_name);
if (name == NULL) {
fail_message:
fprintf(stderr, "Couldn't create symbol for PLT entry: %s\n",
strerror(errno));
fail:
free(name);
return -1;
}
GElf_Addr addr = arch_plt_sym_val(lte, ndx, rela);
struct library_symbol *libsym = malloc(sizeof(*libsym));
if (libsym == NULL)
goto fail_message;
/* XXX The double cast should be removed when
* arch_addr_t becomes integral type. */
arch_addr_t taddr = (arch_addr_t)
(uintptr_t)(addr + lte->bias);
if (library_symbol_init(libsym, taddr, name, 1, LS_TOPLT_EXEC) < 0) {
free(libsym);
goto fail;
}
libsym->next = *ret;
*ret = libsym;
return 0;
}
#ifndef ARCH_HAVE_ADD_PLT_ENTRY
enum plt_status
arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
const char *a_name, GElf_Rela *rela, size_t ndx,
struct library_symbol **ret)
{
return PLT_DEFAULT;
}
#endif
Elf_Data *
elf_loaddata(Elf_Scn *scn, GElf_Shdr *shdr)
{
Elf_Data *data = elf_getdata(scn, NULL);
if (data == NULL || elf_getdata(scn, data) != NULL
|| data->d_off || data->d_size != shdr->sh_size)
return NULL;
return data;
}
static int
elf_get_section_if(struct ltelf *lte, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr,
int (*predicate)(Elf_Scn *, GElf_Shdr *, void *data),
void *data)
{
int i;
for (i = 1; i < lte->ehdr.e_shnum; ++i) {
Elf_Scn *scn;
GElf_Shdr shdr;
scn = elf_getscn(lte->elf, i);
if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) {
debug(1, "Couldn't read section or header.");
return -1;
}
if (predicate(scn, &shdr, data)) {
*tgt_sec = scn;
*tgt_shdr = shdr;
return 0;
}
}
return -1;
}
static int
inside_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data)
{
GElf_Addr addr = *(GElf_Addr *)data;
return addr >= shdr->sh_addr
&& addr < shdr->sh_addr + shdr->sh_size;
}
int
elf_get_section_covering(struct ltelf *lte, GElf_Addr addr,
Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr)
{
return elf_get_section_if(lte, tgt_sec, tgt_shdr,
&inside_p, &addr);
}
static int
type_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data)
{
GElf_Word type = *(GElf_Word *)data;
return shdr->sh_type == type;
}
int
elf_get_section_type(struct ltelf *lte, GElf_Word type,
Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr)
{
return elf_get_section_if(lte, tgt_sec, tgt_shdr,
&type_p, &type);
}
struct section_named_data {
struct ltelf *lte;
const char *name;
};
static int
name_p(Elf_Scn *scn, GElf_Shdr *shdr, void *d)
{
struct section_named_data *data = d;
const char *name = elf_strptr(data->lte->elf,
data->lte->ehdr.e_shstrndx,
shdr->sh_name);
return strcmp(name, data->name) == 0;
}
int
elf_get_section_named(struct ltelf *lte, const char *name,
Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr)
{
struct section_named_data data = {
.lte = lte,
.name = name,
};
return elf_get_section_if(lte, tgt_sec, tgt_shdr,
&name_p, &data);
}
static int
need_data(Elf_Data *data, GElf_Xword offset, GElf_Xword size)
{
assert(data != NULL);
if (data->d_size < size || offset > data->d_size - size) {
debug(1, "Not enough data to read %"PRId64"-byte value"
" at offset %"PRId64".", size, offset);
return -1;
}
return 0;
}
#define DEF_READER(NAME, SIZE) \
int \
NAME(Elf_Data *data, GElf_Xword offset, uint##SIZE##_t *retp) \
{ \
if (!need_data(data, offset, SIZE / 8) < 0) \
return -1; \
\
if (data->d_buf == NULL) /* NODATA section */ { \
*retp = 0; \
return 0; \
} \
\
union { \
uint##SIZE##_t dst; \
char buf[0]; \
} u; \
memcpy(u.buf, data->d_buf + offset, sizeof(u.dst)); \
*retp = u.dst; \
return 0; \
}
DEF_READER(elf_read_u16, 16)
DEF_READER(elf_read_u32, 32)
DEF_READER(elf_read_u64, 64)
#undef DEF_READER
int
open_elf(struct ltelf *lte, const char *filename)
{
lte->fd = open(filename, O_RDONLY);
if (lte->fd == -1)
return 1;
elf_version(EV_CURRENT);
#ifdef HAVE_ELF_C_READ_MMAP
lte->elf = elf_begin(lte->fd, ELF_C_READ_MMAP, NULL);
#else
lte->elf = elf_begin(lte->fd, ELF_C_READ, NULL);
#endif
if (lte->elf == NULL || elf_kind(lte->elf) != ELF_K_ELF) {
fprintf(stderr, "\"%s\" is not an ELF file\n", filename);
exit(EXIT_FAILURE);
}
if (gelf_getehdr(lte->elf, <e->ehdr) == NULL) {
fprintf(stderr, "can't read ELF header of \"%s\": %s\n",
filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
if (lte->ehdr.e_type != ET_EXEC && lte->ehdr.e_type != ET_DYN) {
fprintf(stderr, "\"%s\" is neither an ELF executable"
" nor a shared library\n", filename);
exit(EXIT_FAILURE);
}
if (1
#ifdef LT_ELF_MACHINE
&& (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS
|| lte->ehdr.e_machine != LT_ELF_MACHINE)
#endif
#ifdef LT_ELF_MACHINE2
&& (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS2
|| lte->ehdr.e_machine != LT_ELF_MACHINE2)
#endif
#ifdef LT_ELF_MACHINE3
&& (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS3
|| lte->ehdr.e_machine != LT_ELF_MACHINE3)
#endif
) {
fprintf(stderr,
"\"%s\" is ELF from incompatible architecture\n",
filename);
exit(EXIT_FAILURE);
}
return 0;
}
static void
read_symbol_table(struct ltelf *lte, const char *filename,
Elf_Scn *scn, GElf_Shdr *shdr, const char *name,
Elf_Data **datap, size_t *countp, const char **strsp)
{
*datap = elf_getdata(scn, NULL);
*countp = shdr->sh_size / shdr->sh_entsize;
if ((*datap == NULL || elf_getdata(scn, *datap) != NULL)
&& options.static_filter != NULL) {
fprintf(stderr, "Couldn't get data of section"
" %s from \"%s\": %s\n",
name, filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
scn = elf_getscn(lte->elf, shdr->sh_link);
GElf_Shdr shdr2;
if (scn == NULL || gelf_getshdr(scn, &shdr2) == NULL) {
fprintf(stderr, "Couldn't get header of section"
" #%d from \"%s\": %s\n",
shdr2.sh_link, filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
Elf_Data *data = elf_getdata(scn, NULL);
if (data == NULL || elf_getdata(scn, data) != NULL
|| shdr2.sh_size != data->d_size || data->d_off) {
fprintf(stderr, "Couldn't get data of section"
" #%d from \"%s\": %s\n",
shdr2.sh_link, filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
*strsp = data->d_buf;
}
static int
do_init_elf(struct ltelf *lte, const char *filename)
{
int i;
GElf_Addr relplt_addr = 0;
GElf_Addr soname_offset = 0;
debug(DEBUG_FUNCTION, "do_init_elf(filename=%s)", filename);
debug(1, "Reading ELF from %s...", filename);
for (i = 1; i < lte->ehdr.e_shnum; ++i) {
Elf_Scn *scn;
GElf_Shdr shdr;
const char *name;
scn = elf_getscn(lte->elf, i);
if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) {
fprintf(stderr, "Couldn't get section #%d from"
" \"%s\": %s\n", i, filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
name = elf_strptr(lte->elf, lte->ehdr.e_shstrndx, shdr.sh_name);
if (name == NULL) {
fprintf(stderr, "Couldn't get name of section #%d from"
" \"%s\": %s\n", i, filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
if (shdr.sh_type == SHT_SYMTAB) {
read_symbol_table(lte, filename,
scn, &shdr, name, <e->symtab,
<e->symtab_count, <e->strtab);
} else if (shdr.sh_type == SHT_DYNSYM) {
read_symbol_table(lte, filename,
scn, &shdr, name, <e->dynsym,
<e->dynsym_count, <e->dynstr);
} else if (shdr.sh_type == SHT_DYNAMIC) {
Elf_Data *data;
size_t j;
lte->dyn_addr = shdr.sh_addr + lte->bias;
lte->dyn_sz = shdr.sh_size;
data = elf_getdata(scn, NULL);
if (data == NULL || elf_getdata(scn, data) != NULL) {
fprintf(stderr, "Couldn't get .dynamic data"
" from \"%s\": %s\n",
filename, strerror(errno));
exit(EXIT_FAILURE);
}
for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
GElf_Dyn dyn;
if (gelf_getdyn(data, j, &dyn) == NULL) {
fprintf(stderr, "Couldn't get .dynamic"
" data from \"%s\": %s\n",
filename, strerror(errno));
exit(EXIT_FAILURE);
}
if (dyn.d_tag == DT_JMPREL)
relplt_addr = dyn.d_un.d_ptr;
else if (dyn.d_tag == DT_PLTRELSZ)
lte->relplt_size = dyn.d_un.d_val;
else if (dyn.d_tag == DT_SONAME)
soname_offset = dyn.d_un.d_val;
}
} else if (shdr.sh_type == SHT_PROGBITS
|| shdr.sh_type == SHT_NOBITS) {
if (strcmp(name, ".plt") == 0) {
lte->plt_addr = shdr.sh_addr;
lte->plt_size = shdr.sh_size;
lte->plt_data = elf_loaddata(scn, &shdr);
if (lte->plt_data == NULL)
fprintf(stderr,
"Can't load .plt data\n");
lte->plt_flags = shdr.sh_flags;
}
#ifdef ARCH_SUPPORTS_OPD
else if (strcmp(name, ".opd") == 0) {
lte->opd_addr = (GElf_Addr *) (long) shdr.sh_addr;
lte->opd_size = shdr.sh_size;
lte->opd = elf_rawdata(scn, NULL);
}
#endif
}
}
if (lte->dynsym == NULL || lte->dynstr == NULL) {
fprintf(stderr, "Couldn't find .dynsym or .dynstr in \"%s\"\n",
filename);
exit(EXIT_FAILURE);
}
if (!relplt_addr || !lte->plt_addr) {
debug(1, "%s has no PLT relocations", filename);
lte->relplt = NULL;
lte->relplt_count = 0;
} else if (lte->relplt_size == 0) {
debug(1, "%s has unknown PLT size", filename);
lte->relplt = NULL;
lte->relplt_count = 0;
} else {
for (i = 1; i < lte->ehdr.e_shnum; ++i) {
Elf_Scn *scn;
GElf_Shdr shdr;
scn = elf_getscn(lte->elf, i);
if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) {
fprintf(stderr, "Couldn't get section header"
" from \"%s\": %s\n",
filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
if (shdr.sh_addr == relplt_addr
&& shdr.sh_size == lte->relplt_size) {
lte->relplt = elf_getdata(scn, NULL);
lte->relplt_count =
shdr.sh_size / shdr.sh_entsize;
if (lte->relplt == NULL
|| elf_getdata(scn, lte->relplt) != NULL) {
fprintf(stderr, "Couldn't get .rel*.plt"
" data from \"%s\": %s\n",
filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
break;
}
}
if (i == lte->ehdr.e_shnum) {
fprintf(stderr,
"Couldn't find .rel*.plt section in \"%s\"\n",
filename);
exit(EXIT_FAILURE);
}
debug(1, "%s %zd PLT relocations", filename, lte->relplt_count);
}
if (soname_offset != 0)
lte->soname = lte->dynstr + soname_offset;
return 0;
}
void
do_close_elf(struct ltelf *lte)
{
debug(DEBUG_FUNCTION, "do_close_elf()");
arch_elf_destroy(lte);
elf_end(lte->elf);
close(lte->fd);
}
int
elf_get_sym_info(struct ltelf *lte, const char *filename,
size_t sym_index, GElf_Rela *rela, GElf_Sym *sym)
{
int i = sym_index;
GElf_Rel rel;
void *ret;
if (lte->relplt->d_type == ELF_T_REL) {
ret = gelf_getrel(lte->relplt, i, &rel);
rela->r_offset = rel.r_offset;
rela->r_info = rel.r_info;
rela->r_addend = 0;
} else {
ret = gelf_getrela(lte->relplt, i, rela);
}
if (ret == NULL
|| ELF64_R_SYM(rela->r_info) >= lte->dynsym_count
|| gelf_getsym(lte->dynsym, ELF64_R_SYM(rela->r_info),
sym) == NULL) {
fprintf(stderr,
"Couldn't get relocation from \"%s\": %s\n",
filename, elf_errmsg(-1));
exit(EXIT_FAILURE);
}
return 0;
}
#ifndef ARCH_HAVE_GET_SYMINFO
int
arch_get_sym_info(struct ltelf *lte, const char *filename,
size_t sym_index, GElf_Rela *rela, GElf_Sym *sym)
{
return elf_get_sym_info(lte, filename, sym_index, rela, sym);
}
#endif
static void
mark_chain_latent(struct library_symbol *libsym)
{
for (; libsym != NULL; libsym = libsym->next) {
debug(DEBUG_FUNCTION, "marking %s latent", libsym->name);
libsym->latent = 1;
}
}
static int
populate_plt(struct process *proc, const char *filename,
struct ltelf *lte, struct library *lib,
int latent_plts)
{
size_t i;
for (i = 0; i < lte->relplt_count; ++i) {
GElf_Rela rela;
GElf_Sym sym;
if (arch_get_sym_info(lte, filename, i, &rela, &sym) < 0)
continue; /* Skip this entry. */
char const *name = lte->dynstr + sym.st_name;
/* If the symbol wasn't matched, reject it, unless we
* need to keep latent PLT breakpoints for tracing
* exports. */
int matched = filter_matches_symbol(options.plt_filter,
name, lib);
if (!matched && !latent_plts)
continue;
struct library_symbol *libsym = NULL;
switch (arch_elf_add_plt_entry(proc, lte, name,
&rela, i, &libsym)) {
case PLT_DEFAULT:
if (default_elf_add_plt_entry(proc, lte, name,
&rela, i, &libsym) < 0)
/* fall-through */
case PLT_FAIL:
return -1;
/* fall-through */
case PLT_OK:
if (libsym != NULL) {
/* If we are adding those symbols just
* for tracing exports, mark them all
* latent. */
if (!matched)
mark_chain_latent(libsym);
library_add_symbol(lib, libsym);
}
}
}
return 0;
}
/* When -x rules result in request to trace several aliases, we only
* want to add such symbol once. The only way that those symbols
* differ in is their name, e.g. in glibc you have __GI___libc_free,
* __cfree, __free, __libc_free, cfree and free all defined on the
* same address. So instead we keep this unique symbol struct for
* each address, and replace name in libsym with a shorter variant if
* we find it. */
struct unique_symbol {
arch_addr_t addr;
struct library_symbol *libsym;
};
static int
unique_symbol_cmp(const void *key, const void *val)
{
const struct unique_symbol *sym_key = key;
const struct unique_symbol *sym_val = val;
return sym_key->addr != sym_val->addr;
}
static enum callback_status
symbol_with_address(struct library_symbol *sym, void *addrptr)
{
return sym->enter_addr == *(arch_addr_t *)addrptr
? CBS_STOP : CBS_CONT;
}
static int
populate_this_symtab(struct process *proc, const char *filename,
struct ltelf *lte, struct library *lib,
Elf_Data *symtab, const char *strtab, size_t size,
struct library_exported_name **names)
{
/* If a valid NAMES is passed, we pass in *NAMES a list of
* symbol names that this library exports. */
if (names != NULL)
*names = NULL;
/* Using sorted array would be arguably better, but this
* should be well enough for the number of symbols that we
* typically deal with. */
size_t num_symbols = 0;
struct unique_symbol *symbols = malloc(sizeof(*symbols) * size);
if (symbols == NULL) {
fprintf(stderr, "couldn't insert symbols for -x: %s\n",
strerror(errno));
return -1;
}
GElf_Word secflags[lte->ehdr.e_shnum];
size_t i;
for (i = 1; i < lte->ehdr.e_shnum; ++i) {
Elf_Scn *scn = elf_getscn(lte->elf, i);
if (scn == NULL)
continue;
GElf_Shdr shdr;
if (gelf_getshdr(scn, &shdr) == NULL)
continue;
secflags[i] = shdr.sh_flags;
}
for (i = 0; i < size; ++i) {
GElf_Sym sym;
if (gelf_getsym(symtab, i, &sym) == NULL) {
fail:
fprintf(stderr,
"couldn't get symbol #%zd from %s: %s\n",
i, filename, elf_errmsg(-1));
continue;
}
/* XXX support IFUNC as well. */
if (GELF_ST_TYPE(sym.st_info) != STT_FUNC
|| sym.st_value == 0
|| sym.st_shndx == STN_UNDEF)
continue;
/* Find symbol name and snip version. */
const char *orig_name = strtab + sym.st_name;
const char *version = strchr(orig_name, '@');
size_t len = version != NULL ? (assert(version > orig_name),
(size_t)(version - orig_name))
: strlen(orig_name);
char name[len + 1];
memcpy(name, orig_name, len);
name[len] = 0;
/* If we are interested in exports, store this name. */
char *name_copy = NULL;
if (names != NULL) {
struct library_exported_name *export = NULL;
name_copy = strdup(name);
if (name_copy == NULL
|| (export = malloc(sizeof(*export))) == NULL) {
free(name_copy);
fprintf(stderr, "Couldn't store symbol %s. "
"Tracing may be incomplete.\n", name);
} else {
export->name = name_copy;
export->own_name = 1;
export->next = *names;
*names = export;
}
}
/* If the symbol is not matched, skip it. We already
* stored it to export list above. */
if (!filter_matches_symbol(options.static_filter, name, lib))
continue;
arch_addr_t addr = (arch_addr_t)
(uintptr_t)(sym.st_value + lte->bias);
arch_addr_t naddr;
/* On arches that support OPD, the value of typical
* function symbol will be a pointer to .opd, but some
* will point directly to .text. We don't want to
* translate those. */
if (secflags[sym.st_shndx] & SHF_EXECINSTR) {
naddr = addr;
} else if (arch_translate_address(lte, addr, &naddr) < 0) {
fprintf(stderr,
"couldn't translate address of %s@%s: %s\n",
name, lib->soname, strerror(errno));
continue;
}
char *full_name;
int own_full_name = 1;
if (name_copy == NULL) {
full_name = strdup(name);
if (full_name == NULL)
goto fail;
} else {
full_name = name_copy;
own_full_name = 0;
}
/* Look whether we already have a symbol for this
* address. If not, add this one. */
struct unique_symbol key = { naddr, NULL };
struct unique_symbol *unique
= lsearch(&key, symbols, &num_symbols,
sizeof(*symbols), &unique_symbol_cmp);
if (unique->libsym == NULL) {
struct library_symbol *libsym = malloc(sizeof(*libsym));
if (libsym == NULL
|| library_symbol_init(libsym, naddr,
full_name, own_full_name,
LS_TOPLT_NONE) < 0) {
--num_symbols;
goto fail;
}
unique->libsym = libsym;
unique->addr = naddr;
} else if (strlen(full_name) < strlen(unique->libsym->name)) {
library_symbol_set_name(unique->libsym,
full_name, own_full_name);
} else if (own_full_name) {
free(full_name);
}
}
/* Now we do the union of this set of unique symbols with
* what's already in the library. */
for (i = 0; i < num_symbols; ++i) {
struct library_symbol *this_sym = symbols[i].libsym;
assert(this_sym != NULL);
struct library_symbol *other
= library_each_symbol(lib, NULL, symbol_with_address,
&this_sym->enter_addr);
if (other != NULL) {
library_symbol_destroy(this_sym);
free(this_sym);
symbols[i].libsym = NULL;
}
}
for (i = 0; i < num_symbols; ++i)
if (symbols[i].libsym != NULL)
library_add_symbol(lib, symbols[i].libsym);
free(symbols);
return 0;
}
static int
populate_symtab(struct process *proc, const char *filename,
struct ltelf *lte, struct library *lib,
int symtabs, int exports)
{
int status;
if (symtabs && lte->symtab != NULL && lte->strtab != NULL
&& (status = populate_this_symtab(proc, filename, lte, lib,
lte->symtab, lte->strtab,
lte->symtab_count, NULL)) < 0)
return status;
/* Check whether we want to trace symbols implemented by this
* library (-l). */
struct library_exported_name **names = NULL;
if (exports) {
debug(DEBUG_FUNCTION, "-l matches %s", lib->soname);
names = &lib->exported_names;
}
return populate_this_symtab(proc, filename, lte, lib,
lte->dynsym, lte->dynstr,
lte->dynsym_count, names);
}
static int
read_module(struct library *lib, struct process *proc,
const char *filename, GElf_Addr bias, int main)
{
struct ltelf lte = {};
if (open_elf(<e, filename) < 0)
return -1;
/* XXX When we abstract ABI into a module, this should instead
* become something like
*
* proc->abi = arch_get_abi(lte.ehdr);
*
* The code in open_elf needs to be replaced by this logic.
* Be warned that libltrace.c calls open_elf as well to
* determine whether ABI is supported. This is to get
* reasonable error messages when trying to run 64-bit binary
* with 32-bit ltrace. It is desirable to preserve this. */
proc->e_machine = lte.ehdr.e_machine;
proc->e_class = lte.ehdr.e_ident[EI_CLASS];
get_arch_dep(proc);
/* Find out the base address. For PIE main binaries we look
* into auxv, otherwise we scan phdrs. */
if (main && lte.ehdr.e_type == ET_DYN) {
arch_addr_t entry;
if (process_get_entry(proc, &entry, NULL) < 0) {
fprintf(stderr, "Couldn't find entry of PIE %s\n",
filename);
return -1;
}
/* XXX The double cast should be removed when
* arch_addr_t becomes integral type. */
lte.entry_addr = (GElf_Addr)(uintptr_t)entry;
lte.bias = (GElf_Addr)(uintptr_t)entry - lte.ehdr.e_entry;
} else {
GElf_Phdr phdr;
size_t i;
for (i = 0; gelf_getphdr (lte.elf, i, &phdr) != NULL; ++i) {
if (phdr.p_type == PT_LOAD) {
lte.base_addr = phdr.p_vaddr + bias;
break;
}
}
lte.bias = bias;
lte.entry_addr = lte.ehdr.e_entry + lte.bias;
if (lte.base_addr == 0) {
fprintf(stderr,
"Couldn't determine base address of %s\n",
filename);
return -1;
}
}
if (do_init_elf(<e, filename) < 0)
return -1;
if (arch_elf_init(<e, lib) < 0) {
fprintf(stderr, "Backend initialization failed.\n");
return -1;
}
int status = 0;
if (lib == NULL)
goto fail;
/* Note that we set soname and pathname as soon as they are
* allocated, so in case of further errors, this get released
* when LIB is release, which should happen in the caller when
* we return error. */
if (lib->pathname == NULL) {
char *pathname = strdup(filename);
if (pathname == NULL)
goto fail;
library_set_pathname(lib, pathname, 1);
}
if (lte.soname != NULL) {
char *soname = strdup(lte.soname);
if (soname == NULL)
goto fail;
library_set_soname(lib, soname, 1);
} else {
const char *soname = rindex(lib->pathname, '/') + 1;
if (soname == NULL)
soname = lib->pathname;
library_set_soname(lib, soname, 0);
}
/* XXX The double cast should be removed when
* arch_addr_t becomes integral type. */
arch_addr_t entry = (arch_addr_t)(uintptr_t)lte.entry_addr;
if (arch_translate_address(<e, entry, &entry) < 0)
goto fail;
/* XXX The double cast should be removed when
* arch_addr_t becomes integral type. */
lib->base = (arch_addr_t)(uintptr_t)lte.base_addr;
lib->entry = entry;
/* XXX The double cast should be removed when
* arch_addr_t becomes integral type. */
lib->dyn_addr = (arch_addr_t)(uintptr_t)lte.dyn_addr;
/* There are two reasons that we need to inspect symbol tables
* or populate PLT entries. Either the user requested
* corresponding tracing features (respectively -x and -e), or
* they requested tracing exported symbols (-l).
*
* In the latter case we need to keep even those PLT slots
* that are not requested by -e (but we keep them latent). We
* also need to inspect .dynsym to find what exports this
* library provide, to turn on existing latent PLT
* entries. */
int plts = filter_matches_library(options.plt_filter, lib);
if ((plts || options.export_filter != NULL)
&& populate_plt(proc, filename, <e, lib,
options.export_filter != NULL) < 0)
goto fail;
int exports = filter_matches_library(options.export_filter, lib);
int symtabs = filter_matches_library(options.static_filter, lib);
if ((symtabs || exports)
&& populate_symtab(proc, filename, <e, lib,
symtabs, exports) < 0)
goto fail;
done:
do_close_elf(<e);
return status;
fail:
status = -1;
goto done;
}
int
ltelf_read_library(struct library *lib, struct process *proc,
const char *filename, GElf_Addr bias)
{
return read_module(lib, proc, filename, bias, 0);
}
struct library *
ltelf_read_main_binary(struct process *proc, const char *path)
{
struct library *lib = malloc(sizeof(*lib));
if (lib == NULL)
return NULL;
library_init(lib, LT_LIBTYPE_MAIN);
library_set_pathname(lib, path, 0);
/* There is a race between running the process and reading its
* binary for internal consumption. So open the binary from
* the /proc filesystem. XXX Note that there is similar race
* for libraries, but there we don't have a nice answer like
* that. Presumably we could read the DSOs from the process
* memory image, but that's not currently done. */
char *fname = pid2name(proc->pid);
if (fname == NULL)
return NULL;
if (read_module(lib, proc, fname, 0, 1) < 0) {
library_destroy(lib);
free(lib);
return NULL;
}
free(fname);
return lib;
}