forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
executable file
·68 lines (61 loc) · 1.99 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import sklearn
import math
"""
Extracting information from infer data
"""
filename = './result.txt'
f = open(filename, "r")
lines = f.readlines()
f.close()
result = []
for line in lines:
if "prediction" in str(line):
result.append(line)
result = result[:-1]
pair = []
for line in result:
line = line.strip().split(",")
for seg in line:
if "user" in seg:
user_id = seg.strip().split(":")[1].strip(" ").strip("[]")
if "prediction" in seg:
prediction = seg.strip().split(":")[1].strip(" ").strip("[]")
if "label" in seg:
label = seg.strip().split(":")[1].strip(" ").strip("[]")
pair.append([int(user_id), float(prediction), int(label)])
def takeSecond(x):
return x[1]
"""
Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation
"""
hits = []
ndcg = []
pair = [pair[i:i + 100] for i in range(0, len(pair), 100)]
for user in pair:
user.sort(key=takeSecond, reverse=True)
each_user_top10_line = user[:10]
each_user_top10_line_label = [i[2] for i in each_user_top10_line]
if 1 in each_user_top10_line_label:
i = each_user_top10_line_label.index(1)
ndcg.append(math.log(2) / math.log(i + 2))
hits.append(1)
else:
hits.append(0)
ndcg.append(0)
print("user_num:", len(hits))
print("hit ratio:", np.array(hits).mean())
print("ndcg:", np.array(ndcg).mean())