-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathporthomclPairsOrthologs.py
executable file
·215 lines (145 loc) · 7.39 KB
/
porthomclPairsOrthologs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/python
import time
from datetime import datetime
import sys, os
import gzip
import random, math
from optparse import OptionParser
options = None
DEBUG = False
def readTaxonList(filename):
taxon_list = []
taxon_list_file = open(filename)
for line in taxon_list_file:
line = line.strip()
if line:
taxon_list += [line]
taxon_list_file.close()
return taxon_list
def readBestHit(query_taxon, file_name):
best_hits = {}
with open(file_name) as best_hit_file:
for line in best_hit_file:
cols = line.strip().split('\t')
query_id = query_taxon+'|'+cols[0]
subject_id = cols[1]
subject_taxon = subject_id.split('|')[0]
try:
a = best_hits[subject_taxon]
except:
best_hits[subject_taxon] = {}
try:
best_hits[subject_taxon][query_id] += [(subject_id, int(cols[2]), float(cols[3]))]
except:
best_hits[subject_taxon][query_id] = [(subject_id, int(cols[2]), float(cols[3]))]
return best_hits
def memory_usage_resource():
import resource
rusage_denom = 1024.
if sys.platform == 'darwin':
# ... it seems that in OSX the output is different units ...
rusage_denom = rusage_denom * rusage_denom
mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / rusage_denom
return round(mem,0)
def log(s):
global options
print >> sys.stderr, s
if options.logfile:
l = open(options.logfile, 'a')
l.write(s+'\n')
l.close()
if __name__ == '__main__':
usage = "This is STEP 5.2 of PorthoMcl.\n\nusage: %prog options\n"
parser = OptionParser(usage)
parser.add_option("-t", "--taxonlist", dest="taxonlistfile", help="A single column file containing the list of taxon to work with")
parser.add_option("-x", "--index", dest="index", help="An integer number identifying which taxon to work on [1-size_of_taxon_list]" , type='int')
parser.add_option('-b', '--inBestHitFolder', dest='inBestHitFolder', help='Input folder that contains Best Hit files (bh files)')
parser.add_option('-o', '--outOrthologFolder', dest='outOrthologFolder', help='Folder that will store Orthologous pairs (ort files) in')
parser.add_option("-l", "--logfile", dest="logfile", help="log file (optional, if not supplied STDERR will be used)")
parser.add_option('', '--OverwiteOutput', dest='OverwiteOutput', help='If the output file exists, overwrite it. (default=process terminates)', default=False, action="store_true")
parser.add_option('', '--KeepUnnormalizedScore', dest='KeepUnnormalizedScore', help='Write the un-normalize scores for ortholog pairs (default=False)', default=False, action="store_true")
#
(options, args) = parser.parse_args()
if len(args) != 0 or not options.taxonlistfile or not options.inBestHitFolder or not options.index or not options.outOrthologFolder:
parser.error("incorrect arguments.\n\t\tUse -h to get more information or refer to the MANUAL.md")
#print best_hit
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format(1 , 'reading taxon list', options.index, '' ,memory_usage_resource(), datetime.now() ))
taxon_list = readTaxonList(options.taxonlistfile)
if options.index <= 0 or options.index > len(taxon_list):
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format('ERROR' , 'Error in index', options.index, '', memory_usage_resource(), datetime.now() ))
exit()
taxon1s = taxon_list[options.index - 1]
# if not options.OverwiteOutput and os.path.exists(os.path.join(options.outputfolder, taxon1s + '.ort.tsv')):
# exit(0)
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format(2 , 'Reading Best hit (bh file)', options.index, taxon1s , memory_usage_resource(), datetime.now() ))
taxon1_filename = os.path.join(options.inBestHitFolder , taxon1s + '.bh.tsv')
taxon1_dic = readBestHit(taxon1s, taxon1_filename)
# for taxon2s in sorted(taxon1_dic.keys()):
# print taxon2s
# for query_id in taxon1_dic[taxon2s]:
# print '\t\t', query_id, ': ',
# for (s_id, ev_exp, ev_mnt) in taxon1_dic[taxon2s][query_id]:
# print s_id, ',',
# print
# exit()
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format(2.1 , 'Size: ' + str(len(taxon1_dic)) + ' taxons.', options.index, taxon1s , memory_usage_resource(), datetime.now() ))
orthologs = []
orthologs_index = 0
taxon2_index = 0
for taxon2s in sorted(taxon1_dic.keys()):
if taxon1s < taxon2s:
taxon2_filename = os.path.join(options.inBestHitFolder , taxon2s + '.bh.tsv')
taxon2_index += 1
if not os.path.exists(taxon2_filename):
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format('3.' + str(taxon2_index) , 'ERROR: Targeted Best hit ('+taxon2s+'.bh.tsv) Does not exists', options.index, taxon1s , memory_usage_resource(), datetime.now() ))
continue
taxon2_dic = readBestHit(taxon2s, taxon2_filename)
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format('3.' + str(taxon2_index) , 'Reading Targeted Best hit ('+taxon2s+'.bh.tsv)', options.index, taxon1s , memory_usage_resource(), datetime.now() ))
taxon1_taxon2_score_sum = 0
taxon1_taxon2_score_count = 0
taxon1_taxon2_notfound_count = 0
for seq1 in taxon1_dic[taxon2s]:
for (seq2, evalue_exp1, evalue_mant1) in taxon1_dic[taxon2s][seq1]:
try:
for (seq0, evalue_exp2, evalue_mant2) in taxon2_dic[taxon1s][seq2]:
unnormalized_score = None
if evalue_mant1 < 0.01 or evalue_mant2 < 0.01:
unnormalized_score = (evalue_exp1 + evalue_exp2) / -2
else:
unnormalized_score = (math.log10(evalue_mant1 * evalue_mant2) + evalue_exp2 + evalue_exp1) / -2
orthologs += [ [seq1, seq2, unnormalized_score, None] ]
taxon1_taxon2_score_sum += unnormalized_score
taxon1_taxon2_score_count += 1
if DEBUG:
print '\t' , seq1 ,'(',len(taxon1_dic[taxon2s][seq1]),')', '<----->' , seq2 , str(unnormalized_score)
except KeyError:
taxon1_taxon2_notfound_count += 1
if DEBUG:
print '\t', seq1, '(',len(taxon1_dic[taxon2s][seq1]),')', '<----> NOTHING'
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format('4.' + str(taxon2_index) , 'Orthologs: ' + str( taxon1_taxon2_score_count) , options.index, taxon1s , memory_usage_resource(), datetime.now() ))
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format('4.' + str(taxon2_index), 'No hits: ' + str( taxon1_taxon2_notfound_count) , options.index, taxon1s , memory_usage_resource(), datetime.now() ))
average = 1
if taxon1_taxon2_score_count>0:
average = taxon1_taxon2_score_sum/taxon1_taxon2_score_count
if DEBUG:
print taxon1s,'<->',taxon2s, 'Count:',taxon1_taxon2_score_count ,'Average:' ,average
print
for i in xrange(taxon1_taxon2_score_count):
if average>0:
orthologs[orthologs_index+i][3] = orthologs[orthologs_index+i][2] / average
else:
orthologs[orthologs_index+i][3] = 1
orthologs_index += taxon1_taxon2_score_count
out_f = open (os.path.join(options.outOrthologFolder , taxon1s + '.ort.tsv'), 'w')
if options.KeepUnnormalizedScore:
out_f.write('query_id\tsubject_id\tunnormalized_score\tnormalized_score\n')
for ortholog in orthologs:
out_f.write(ortholog[0] + '\t')
out_f.write(ortholog[1] + '\t')
if options.KeepUnnormalizedScore:
out_f.write(str(ortholog[2]) +'\t')
else:
ortholog[3] = int( ortholog[3] * 1000 + .5) / 1000.0
out_f.write(str(ortholog[3]) + '\n')
out_f.close()
log('{2} | Orthology | {0} | {1} | {3} | {4} MB | {5}'.format(5, 'Finished' , options.index, taxon1s , memory_usage_resource(), datetime.now() ))