-
Notifications
You must be signed in to change notification settings - Fork 20.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Block number is always zero with fast syncmode #16411
Comments
Syncing Ethereum is a pain point for many people, so I'll try to detail what's happening behind the scenes so there might be a bit less confusion. The current default mode of sync for Geth is called fast sync. Instead of starting from the genesis block and reprocessing all the transactions that ever occurred (which could take weeks), fast sync downloads the blocks, and only verifies the associated proof-of-works. Downloading all the blocks is a straightforward and fast procedure and will relatively quickly reassemble the entire chain. Many people falsely assume that because they have the blocks, they are in sync. Unfortunately this is not the case, since no transaction was executed, so we do not have any account state available (ie. balances, nonces, smart contract code and data). These need to be downloaded separately and cross checked with the latest blocks. This phase is called the state trie download and it actually runs concurrently with the block downloads; alas it take a lot longer nowadays than downloading the blocks. So, what's the state trie? In the Ethereum mainnet, there are a ton of accounts already, which track the balance, nonce, etc of each user/contract. The accounts themselves are however insufficient to run a node, they need to be cryptographically linked to each block so that nodes can actually verify that the account's are not tampered with. This cryptographic linking is done by creating a tree data structure above the accounts, each level aggregating the layer below it into an ever smaller layer, until you reach the single root. This gigantic data structure containing all the accounts and the intermediate cryptographic proofs is called the state trie. Ok, so why does this pose a problem? This trie data structure is an intricate interlink of hundreds of millions of tiny cryptographic proofs (trie nodes). To truly have a synchronized node, you need to download all the account data, as well as all the tiny cryptographic proofs to verify that noone in the network is trying to cheat you. This itself is already a crazy number of data items. The part where it gets even messier is that this data is constantly morphing: at every block (15s), about 1000 nodes are deleted from this trie and about 2000 new ones are added. This means your node needs to synchronize a dataset that is changing 200 times per second. The worst part is that while you are synchronizing, the network is moving forward, and state that you begun to download might disappear while you're downloading, so your node needs to constantly follow the network while trying to gather all the recent data. But until you actually do gather all the data, your local node is not usable since it cannot cryptographically prove anything about any accounts. If you see that you are 64 blocks behind mainnet, you aren't yet synchronized, not even close. You are just done with the block download phase and still running the state downloads. You can see this yourself via the seemingly endless Q: The node just hangs on importing state enties?! A: The node doesn't hang, it just doesn't know how large the state trie is in advance so it keeps on going and going and going until it discovers and downloads the entire thing. The reason is that a block in Ethereum only contains the state root, a single hash of the root node. When the node begins synchronizing, it knows about exactly 1 node and tries to download it. That node, can refer up to 16 new nodes, so in the next step, we'll know about 16 new nodes and try to download those. As we go along the download, most of the nodes will reference new ones that we didn't know about until then. This is why you might be tempted to think it's stuck on the same numbers. It is not, rather it's discovering and downloading the trie as it goes along. Q: I'm stuck at 64 blocks behind mainnet?! A: As explained above, you are not stuck, just finished with the block download phase, waiting for the state download phase to complete too. This latter phase nowadays take a lot longer than just getting the blocks. Q: Why does downloading the state take so long, I have good bandwidth? A: State sync is mostly limited by disk IO, not bandwidth. The state trie in Ethereum contains hundreds of millions of nodes, most of which take the form of a single hash referencing up to 16 other hashes. This is a horrible way to store data on a disk, because there's almost no structure in it, just random numbers referencing even more random numbers. This makes any underlying database weep, as it cannot optimize storing and looking up the data in any meaningful way. Not only is storing the data very suboptimal, but due to the 200 modification / second and pruning of past data, we cannot even download it is a properly pre-processed way to make it import faster without the underlying database shuffling it around too much. The end result is that even a fast sync nowadays incurs a huge disk IO cost, which is too much for a mechanical hard drive. Q: Wait, so I can't run a full node on an HDD? A: Unfortunately not. Doing a fast sync on an HDD will take more time than you're willing to wait with the current data schema. Even if you do wait it out, an HDD will not be able to keep up with the read/write requirements of transaction processing on mainnet. You however should be able to run a light client on an HDD with minimal impact on system resources. If you wish to run a full node however, an SSD is your only option. |
So how long does a fast sync actually take nowadays? A day, a week, a month? We've had nodes fall behind and never being able to catch. Our only solution was to start a fast sync again from scratch. Any recommendations to work around this issue? Also noted here: |
Is there any way to get a sense of the progress of the state download phase? How many state entries are there today? Am I waiting for the |
Mist fell back to Infura while Geth was syncing. |
@karalabe thanks for the awesome explanations! |
Hi there,
After being running a mainnet Geth node for a couple of months, I get a block number which value is always zero when I execute eth_blockNumber rest RPC call.
System information
Version: 1.8.1-stable
Git Commit: 1e67410
Architecture: amd64
Protocol Versions: [63 62]
Network Id: 1
Go Version: go1.9.4
Operating System: linux
Expected behaviour
After being running for a couple of months, executing RPC calls to my mainnet Geth node falls into a block number which value is always zero.
I would expect to get the current block number.
Actual behaviour
I run geth with the following parameters:
/usr/local/bin/geth --datadir /blockchains/ethereum/mainnet --syncmode fast --cache 2048 --port 30304 --rpc --rpcaddr 0.0.0.0 --rpcport 8645 --ws --wsport=8547
On the syslog I get:
Mar 29 07:35:25 localhost geth[5706]: INFO [03-29|07:35:25] Imported new block headers count=1 elapsed=10.102ms number=5341766 hash=33117b…015f6c ignored=
seems like there's an issue on the REST RPC eth_blockNumber method:
curl -H "Content-Type: application/json" -X POST --data '{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id":83}' http://localhost:8645
{"jsonrpc":"2.0","id":83,"result":"0x0"}
Steps to reproduce the behaviour
Geth command:
/usr/local/bin/geth --datadir /blockchains/ethereum/mainnet --syncmode fast --cache 2048 --port 30304 --rpc --rpcaddr 0.0.0.0 --rpcport 8645 --ws --wsport=8547
Execute eth_blockNumber RPC call:
curl -H "Content-Type: application/json" -X POST --data '{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id":83}' http://localhost:8645
{"jsonrpc":"2.0","id":83,"result":"0x0"}
The text was updated successfully, but these errors were encountered: