-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
224 lines (198 loc) · 7.88 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from networkx.drawing.layout import spring_layout, spiral_layout, kamada_kawai_layout
import networkx as nx
import plotly.graph_objects as go
import numpy as np
from pyvis.network import Network
def set_new_attr_from_existing(g: nx.DiGraph, in_attr: str, out_attr: str, attr_type: str) -> nx.DiGraph:
"""
Utility for creating new attributes from existing in graph. Useful for setting keywords for visualization/analysis, e.g. size, pos, weight.
:param g: The incoming graph.
:param in_attr: The attribute to copy values from for each entity.
:param out_attr: The name of the new attribute.
:param attr_type: One of {'nodes', 'edges'}
:return: The updated graph.
"""
valid_attr_types = {'nodes', 'edges'}
if attr_type not in valid_attr_types:
raise ValueError(f'attr_type argument must be one of {valid_attr_types}')
if attr_type == 'nodes':
node_attrs = {}
for node in g.nodes(data=True):
node_attrs[node[0]] = {out_attr: node[1][in_attr]}
nx.set_node_attributes(g, node_attrs)
if attr_type == 'edges':
edge_attrs = {}
for edge in g.edges(data=True):
edge_attrs[edge[0]] = {out_attr: edge[1][in_attr]}
nx.set_edge_attributes(g, edge_attrs)
return g
def plot_graph_simple(g: nx.DiGraph):
net = Network()
net.from_nx(g)
net.show('example.html')
def plot_witness_graph_plotly(G: nx.DiGraph):
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = G.nodes[edge[0]]['coordinates']
x1, y1 = G.nodes[edge[1]]['coordinates']
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = []
node_y = []
node_text = []
for node in G.nodes():
x, y = G.nodes[node]['coordinates']
node_text.append(G.nodes[node]['name'])
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
# colorscale options
# 'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' |
# 'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' |
# 'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' |
colorscale='YlGnBu',
reversescale=True,
color=[],
size=10,
colorbar=dict(
thickness=15,
title='Node Connections',
xanchor='left',
titleside='right'
),
line_width=2))
node_adjacencies = []
for node, adjacencies in enumerate(G.adjacency()):
node_adjacencies.append(len(adjacencies[1]))
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='<br>Hotspot Witness Graph',
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
fig.show()
def _get_token_flow_traces(G: nx.DiGraph):
positions = spring_layout(G)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = []
node_y = []
node_text = []
node_balances = []
for node in G.nodes():
node_text.append(G.nodes[node]['address'])
node_balances.append(np.log10(G.nodes[node]['balance']))
x, y = positions[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale='YlGnBu',
reversescale=True,
color=[],
size=10,
colorbar=dict(
thickness=15,
title='Log(Account Balance)',
xanchor='left',
titleside='right'
),
line_width=2))
return node_trace, edge_trace, node_text, node_balances
def plot_payee_graph(G: nx.DiGraph, sized_by: str = 'total_received'):
node_trace, edge_trace, node_text, node_balances = _get_token_flow_traces(G)
total_received, num_payments = [], []
for node, adjacencies in enumerate(G.in_edges(data=True)):
total_received_by_node, num_payments_to_node = 0, 0
total_received_by_node += adjacencies[2]['total_amount'] / 1e12
num_payments_to_node += adjacencies[2]['num_payments']
total_received.append(total_received_by_node)
num_payments.append(num_payments_to_node)
if sized_by == 'total_received':
node_trace.marker.size = total_received
title = '<br>Token Flow: Nodes Sized by Total Amount Received over Time Period'
elif sized_by == 'num_payments':
node_trace.marker.size = num_payments
title = '<br>Token Flow: Nodes Sized by Total Number of Payments Received over Time Period'
node_trace.text = node_text
node_trace.marker.color = node_balances
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=title,
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
fig.show()
def plot_payer_graph(G: nx.DiGraph, sized_by: str = 'total_paid'):
node_trace, edge_trace, node_text, node_balances = _get_token_flow_traces(G)
total_received, num_payments = [], []
for node, adjacencies in enumerate(G.adjacency()):
total_paid_by_node, num_payments_from_node = 0, 0
for payee in adjacencies[1]:
payment = adjacencies[1][payee]
total_paid_by_node += payment['total_amount'] / 1e12
num_payments_from_node += payment['num_payments']
total_received.append(total_paid_by_node)
num_payments.append(num_payments_from_node)
if sized_by == 'total_paid':
node_trace.marker.size = total_received
title = '<br>Token Flow: Nodes Sized by Total Amount Paid over Time Period'
elif sized_by == 'num_payments':
node_trace.marker.size = num_payments
title = '<br>Token Flow: Nodes Sized by Total Number of Payments Sent over Time Period'
node_trace.text = node_text
node_trace.marker.color = node_balances
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=title,
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
fig.show()