-
Notifications
You must be signed in to change notification settings - Fork 0
/
mod_cifar_dcgan.py
237 lines (207 loc) · 8.49 KB
/
mod_cifar_dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
""" Conditional DCGAN for MNIST images generations.
Author: Moustafa Alzantot (malzantot@ucla.edu)
All rights reserved.
"""
import os
import argparse
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision
from torchvision.utils import save_image
from torchvision import datasets, transforms
class ModelD(nn.Module):
def __init__(self):
super(ModelD, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5, 1, 2)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 5, 1, 2)
self.bn2 = nn.BatchNorm2d(64)
self.fc1 = nn.Linear(64*32*32+1000, 1024)
self.fc2 = nn.Linear(1024, 1)
self.fc3 = nn.Linear(10, 1000) # modified here
def forward(self, x, labels):
batch_size = x.size(0)
x = x.view(batch_size, 3, 32,32)
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
x = x.view(batch_size, 64*32*32)
labels = labels.view(batch_size, 10)
y_ = self.fc3(labels)
y_ = F.relu(y_)
y_ = y_.view(batch_size, -1)
x = torch.cat([x, y_], 1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return F.sigmoid(x)
class ModelG(nn.Module):
def __init__(self, z_dim):
self.z_dim = z_dim
super(ModelG, self).__init__()
self.fc2 = nn.Linear(10, 1000) # from 10 here
self.fc = nn.Linear(self.z_dim+1000, 64*32*32)
self.bn1 = nn.BatchNorm2d(64)
self.deconv1 = nn.ConvTranspose2d(64, 32, 5, 1, 2)
self.bn2 = nn.BatchNorm2d(32)
self.deconv2 = nn.ConvTranspose2d(32, 3, 5, 1, 2)
def forward(self, x, labels):
batch_size = x.size(0)
labels = labels.view(batch_size, 10)
y_ = self.fc2(labels)
y_ = F.relu(y_)
y_ = y_.view(batch_size, -1)
x = torch.cat([x, y_], 1)
x = self.fc(x)
x = x.view(batch_size, 64, 32, 32)
x = self.bn1(x)
x = F.relu(x)
x = self.deconv1(x)
x = self.bn2(x)
x = F.relu(x)
x = self.deconv2(x)
x = F.sigmoid(x)
return x
if __name__ == '__main__':
parser = argparse.ArgumentParser('Conditional DCGAN')
parser.add_argument('--batch_size', type=int, default=128,
help='Batch size (default=128)')
parser.add_argument('--lr', type=float, default=0.01,
help='Learning rate (default=0.01)')
parser.add_argument('--epochs', type=int, default=10,
help='Number of training epochs.')
parser.add_argument('--nz', type=int, default=100,
help='Number of dimensions for input noise.')
parser.add_argument('--cuda', action='store_true',
help='Enable cuda')
parser.add_argument('--save_every', type=int, default=1,
help='After how many epochs to save the model.')
parser.add_argument('--print_every', type=int, default=50,
help='After how many epochs to print loss and save output samples.')
parser.add_argument('--save_dir', type=str, default='models',
help='Path to save the trained models.')
parser.add_argument('--samples_dir', type=str, default='samples',
help='Path to save the output samples.')
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.samples_dir):
os.mkdir(args.samples_dir)
INPUT_SIZE = 1024
SAMPLE_SIZE = 80
NUM_LABELS = 10
train_dataset = datasets.CIFAR10(root='data',
train=True,
download=True,
transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, shuffle=True,
batch_size=args.batch_size)
model_d = ModelD()
model_g = ModelG(args.nz)
criterion = nn.BCELoss()
input = torch.FloatTensor(args.batch_size, INPUT_SIZE)
noise = torch.FloatTensor(args.batch_size, (args.nz))
fixed_noise = torch.FloatTensor(SAMPLE_SIZE, args.nz).normal_(0,1)
fixed_labels = torch.zeros(SAMPLE_SIZE, NUM_LABELS)
for i in range(NUM_LABELS):
for j in range(SAMPLE_SIZE // NUM_LABELS):
fixed_labels[i*(SAMPLE_SIZE // NUM_LABELS) + j, i] = 1.0
label = torch.FloatTensor(args.batch_size)
one_hot_labels = torch.FloatTensor(args.batch_size, 10)
if args.cuda:
model_d.cuda()
model_g.cuda()
input, label = input.cuda(), label.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
one_hot_labels = one_hot_labels.cuda()
fixed_labels = fixed_labels.cuda()
optim_d = optim.SGD(model_d.parameters(), lr=args.lr)
optim_g = optim.SGD(model_g.parameters(), lr=args.lr)
fixed_noise = Variable(fixed_noise)
fixed_labels = Variable(fixed_labels)
real_label = 1
fake_label = 0
for epoch_idx in range(args.epochs):
model_d.train()
model_g.train()
d_loss = 0.0
g_loss = 0.0
for batch_idx, (train_x, train_y) in enumerate(train_loader):
batch_size = train_x.size(0)
if args.cuda:
train_x = train_x.cuda()
train_y = train_y.cuda()
input.resize_as_(train_x).copy_(train_x)
label.resize_(batch_size).fill_(real_label)
one_hot_labels.resize_(batch_size, NUM_LABELS).zero_() # 128 10
one_hot_labels.scatter_(1, train_y.view(batch_size,1), 1)
inputv = Variable(input)
labelv = Variable(label)
output = model_d(inputv, Variable(one_hot_labels))
optim_d.zero_grad()
errD_real = criterion(output, labelv)
errD_real.backward()
realD_mean = output.data.cpu().mean()
one_hot_labels.resize_(batch_size, NUM_LABELS).zero_()
#
rand_y = torch.from_numpy(
np.random.randint(0, NUM_LABELS, size=(batch_size,1))).cuda()
one_hot_labels.scatter_(1, rand_y.view(batch_size,1), 1)
noise.resize_(batch_size, args.nz).normal_(0,1)
label.resize_(batch_size).fill_(fake_label)
noisev = Variable(noise)
labelv = Variable(label)
onehotv = Variable(one_hot_labels)
g_out = model_g(noisev, onehotv)
output = model_d(g_out, onehotv)
errD_fake = criterion(output, labelv)
fakeD_mean = output.data.cpu().mean()
errD = errD_real + errD_fake
errD_fake.backward()
optim_d.step()
# train the G
noise.normal_(0,1)
# resized here
one_hot_labels.resize_(batch_size, NUM_LABELS).zero_()
#
rand_y = torch.from_numpy(
np.random.randint(0, NUM_LABELS, size=(batch_size,1))).cuda()
one_hot_labels.scatter_(1, rand_y.view(batch_size,1), 1)
label.resize_(batch_size).fill_(real_label)
onehotv = Variable(one_hot_labels)
noisev = Variable(noise)
labelv = Variable(label)
g_out = model_g(noisev, onehotv)
output = model_d(g_out, onehotv)
errG = criterion(output, labelv)
optim_g.zero_grad()
errG.backward()
optim_g.step()
d_loss += errD.data
g_loss += errG.data
if batch_idx % args.print_every == 0:
print(
"\t{} ({} / {}) mean D(fake) = {:.4f}, mean D(real) = {:.4f}".
format(epoch_idx, batch_idx, len(train_loader), fakeD_mean,
realD_mean))
g_out = model_g(fixed_noise, fixed_labels).data.view(
SAMPLE_SIZE, 3, 32,32).cpu()
save_image(g_out,
'{}/{}_{}.png'.format(
args.samples_dir, epoch_idx, batch_idx))
print('Epoch {} - D loss = {:.4f}, G loss = {:.4f}'.format(epoch_idx,
d_loss, g_loss))
if epoch_idx % args.save_every == 0:
torch.save({'state_dict': model_d.state_dict()},
'{}/model_d_epoch_{}.pth'.format(
args.save_dir, epoch_idx))
torch.save({'state_dict': model_g.state_dict()},
'{}/model_g_epoch_{}.pth'.format(
args.save_dir, epoch_idx))