forked from nkolkin13/NeuralNeighborStyleTransfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNST.py
119 lines (87 loc) · 3.95 KB
/
NNST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Core Imports
import time
import argparse
import random
# External Dependency Imports
from imageio import imwrite
import torch
import numpy as np
# Internal Project Imports
from pretrained.vgg import Vgg16Pretrained
from utils import misc as misc
from utils.misc import load_path_for_pytorch
from utils.stylize import produce_stylization
# These should come from our helpers
################################################################################
from itertools import cycle, islice
def cycle_args(function, *args):
"""calls a function multiple times with each arg cycled to max count, (func, arg_a_list, arg_b_list...)"""
max_len = max(map(len,args))
args = list(args)
for i, arg in enumerate(args):
args[i] = list(islice(cycle(arg), max_len))
print('Running', function.__name__, max_len, 'times')
for i in range(max_len):
function( *[arg[i] for arg in args] )
import os
def filename(path):
'''returns just filename without extension from full path'''
return os.path.splitext(os.path.split(path)[-1])[0]
################################################################################
# style transfer with slightly simplifed signiture, for easy vvvv experiments
def style_transfer(content_path, style_path, output_path, style_weight):
# lock size to 1024 rather than 512
max_scls = 5
sz = 1024
# swith to 512 if you get an OOM error!
"""""
max_scls = 4
sz = 512
"""""
# could add to args later
flip_aug = False
dont_colorize = False
content_loss = False
assert (0.0 <= style_weight) and (style_weight <= 1.0), "style weight must be between 0 and 1"
# Define feature extractor
cnn = misc.to_device(Vgg16Pretrained())
phi = lambda x, y, z: cnn.forward(x, inds=y, concat=z)
# Load images (woulod be good to use our helpers so this is consistent)
content_im_orig = misc.to_device(load_path_for_pytorch(content_path, target_size=sz)).unsqueeze(0)
style_im_orig = misc.to_device(load_path_for_pytorch(style_path, target_size=sz)).unsqueeze(0)
# Run Style Transfer
torch.cuda.synchronize()
start_time = time.time()
output = produce_stylization(content_im_orig, style_im_orig, phi,
max_iter=200,
lr=2e-3,
content_weight=style_weight,
max_scls=max_scls,
flip_aug=flip_aug,
content_loss=content_loss,
dont_colorize=dont_colorize)
torch.cuda.synchronize()
# Should get anything printing on conda node in vvvv
print(filename(output_path) + ' done, total time: {}'.format(time.time() - start_time))
# Convert from pyTorch to numpy, clip to valid range
new_im_out = np.clip(output[0].permute(1, 2, 0).detach().cpu().numpy(), 0., 1.)
# Save stylized output
save_im = (new_im_out * 255).astype(np.uint8)
imwrite(output_path, save_im)
if __name__ == '__main__':
# Define command line parser and get command line arguments
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--content_path', nargs='+', type=str, help='list of content image paths', default=["inputs/content/C1.png"])
parser.add_argument('--style_path', nargs='+', type=str, help='list of style image paths', default=["inputs/style/S3.jpg"])
parser.add_argument('--output_path', nargs='+', type=str, help='list of saved output images paths', default=["inputs/out.jpg"])
parser.add_argument('--style_weight', nargs='+', type=float, default=[0.75])
args = parser.parse_args()
assert torch.cuda.is_available(), "attempted to use gpu when unavailable"
# Fix Random Seed
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
cycle_args(style_transfer, *vars(args).values())
# Free gpu memory in case something else needs it later
torch.cuda.empty_cache()