-
Notifications
You must be signed in to change notification settings - Fork 4
/
MCTS.py
290 lines (237 loc) · 11.4 KB
/
MCTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from __future__ import print_function
import math
import numpy as np
import os
from shutil import copyfile
import sys
sys.path.insert(0,"timing")
from GS_timing import millis
from pytorch_classification.utils import AverageMeter
from Debug import Debug
import warnings, copy
class MCTS():
"""
This class handles the MCTS tree.
"""
# (debug) print every board to a file
print_boards = False
def __init__(self, game, nnet, args):
self.game = game
self.nnet = nnet
self.args = args
self.Qsa = {} # stores Q values for s,a (as defined in the paper)
self.Nsa = {} # stores #times edge s,a was visited
self.Ns = {} # stores #times board s was visited
self.Ps = {} # stores initial policy (returned by neural net)
self.Es = {} # stores game.getGameEnded ended for board s
self.Vs = {} # stores game.getValidMoves for board s - full list of size game.getActionSize
self.Ls = {} # stores LegalMoves for board s - short list
self.Nbnodes = {} # stores number of nodes outgoing from node (board) s
self.numActionProbs = 0
self.searchIndex = 0
self.predictionMeter = AverageMeter()
self.debug = Debug()
self.maxHalfMovesForDebug = 150
self.id = np.random.randint(1000)
warnings.filterwarnings('error', category=RuntimeWarning)
def getActionProb(self, canonicalBoard, temp=1):
"""
This function performs numMCTSSims simulations of MCTS starting from
canonicalBoard.
Returns:
probs: a policy vector where the probability of the ith action is
proportional to Nsa[(s,a)]**(1./temp)
"""
self.numActionProbs += 1
if not canonicalBoard.id:
canonicalBoard.id = "ActionProb_"+str(self.numActionProbs)+"_"
for i in range(self.args.numMCTSSims):
#print("getActionProb, simulation:", i)
self.search(canonicalBoard, True)
s = self.game.stringRepresentation(canonicalBoard)
counts = [self.Nsa[(s,a)] if (s,a) in self.Nsa else 0 for a in range(self.game.getActionSize())]
if temp==0:
maxi = max(counts)
#print("maxi=",maxi, " of counts=", counts)
allBest = np.where(np.array(counts)==maxi)[0]
#print("[",self.id,"] getActionProb:", self.numActionProbs, "allBest=", allBest)
bestA = np.random.choice(allBest)
#print("[",self.id,"] getActionProb:", self.numActionProbs, "bestA=", bestA)
# bestA = np.argmax(counts)
probs = [0]*len(counts)
probs[bestA]=1
return probs
counts = [x**(1./temp) for x in counts]
if sum(counts)==0:
canonicalBoard.display()
probs = [x/float(sum(counts)) for x in counts]
return probs
def search(self, canonicalBoard, isRootNode):
"""
This function performs one iteration of MCTS. It is recursively called
till a leaf node is found. The action chosen at each node is one that
has the maximum upper confidence bound as in the paper.
Once a leaf node is found, the neural network is called to return an
initial policy P and a value v for the state. This value is propogated
up the search path. In case the leaf node is a terminal state, the
outcome is propogated up the search path. The values of Ns, Nsa, Qsa are
updated.
NOTE: the return values are the negative of the value of the current
state. This is done since v is in [-1,1] and if v is the value of a
state for the current player, then its value is -v for the other player.
Returns:
v: the negative of the value of the current canonicalBoard
"""
self.searchIndex += 1
myIndex = self.searchIndex
#print("MCTS.search: ", myIndex, " size of map: ", len(self.Ps))
s = self.game.stringRepresentation(canonicalBoard)
# check rotation and active player
#rot = s[3]
#assert rot=="r" or rot=="n", "Illegal rotation flag:"+str(rot)+" in "+s
#if rot=="r":
# assert rot=="r" and canonicalBoard.halfMoves % 2 == 1, canonicalBoard.display()
#else:
# assert rot=="n" and canonicalBoard.halfMoves % 2 == 0, canonicalBoard.display()
if s not in self.Es:
self.Es[s] = self.game.getGameEnded(canonicalBoard, 1)
if self.Es[s]!=0 and self.print_boards:
# print("game over detected, r:", self.Es[s], ", halfMoves:", canonicalBoard.halfMoves, ", no-progress:", canonicalBoard.noProgressCount)
#print("all_moves: ", canonicalBoard.executed_moves)
#canonicalBoard.display()
self.debug.print_to_file(canonicalBoard, s, "Game over, result:"+str(self.Es[s]))
if self.Es[s]!=0:
# terminal node
return -self.Es[s]
if s not in self.Ps:
# leaf node
start = millis()
self.Ps[s], v = self.nnet.predict(canonicalBoard)
time = millis() - start
self.predictionMeter.update(time)
valids = self.game.getValidMoves(canonicalBoard, 1)
# for debugging
# orig_Ps_s = copy.deepcopy(self.Ps[s])
self.Ps[s] = self.Ps[s]*valids # masking invalid moves
# for debugging
# masked_Ps_s = copy.deepcopy(self.Ps[s])
#try:
sum_Ps_s = np.sum(self.Ps[s])
if sum_Ps_s > 0:
self.Ps[s] /= sum_Ps_s # renormalize
else:
# if all valid moves were masked
# make all valid moves equally probable
print("All valid moves were masked, do workaround. board.id=",canonicalBoard.id)
#print("valid_moves:", canonicalBoard.filter_legal_moves())
#print("executed_moves:", canonicalBoard.executed_moves)
#canonicalBoard.display()
predicted = "?" # np.where(orig_Ps_s > 0)
self.debug.print_to_file(canonicalBoard, "workarounds", "All valid moves were masked, do workaround\npredicted_actions:"+str(predicted))
self.Ps[s] = self.Ps[s] + valids
self.Ps[s] /= np.sum(self.Ps[s])
#except Warning:
# print("Error detected")
# canonicalBoard.display()
# self.debug.print_legal_moves(canonicalBoard)
# print("all_previous_moves: ", canonicalBoard.executed_moves)
# # print to file
# self.debug.print_to_file(canonicalBoard, s, "Error detected")
# raise
self.Vs[s] = valids
self.Ls[s] = canonicalBoard.legal_moves
self.Ns[s] = 0
#if self.print_boards:
# self.debug.print_to_file(canonicalBoard, s, "Valid moves calculated")
return -v
canonicalBoard.legal_moves = self.Ls[s]
valids = self.Vs[s]
cur_best = -float('inf')
#best_act = -1
allBest = []
# add Dirichlet noise for root node. set epsilon=0 for Arena competitions of trained models
e = self.args.epsilon
if isRootNode and e>0:
noise = np.random.dirichlet([self.args.dirAlpha] * len(canonicalBoard.filter_legal_moves()))
# pick the action with the highest upper confidence bound
i = -1
for a in range(self.game.getActionSize()):
if valids[a]:
i += 1
if (s,a) in self.Qsa:
q = self.Qsa[(s,a)]
n_s_a = self.Nsa[(s,a)]
#u = self.Qsa[(s,a)] + self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s])/(1+self.Nsa[(s,a)])
else:
q = 0
n_s_a = 0
#u = self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s]) # Q = 0 ?
p = self.Ps[s][a]
if isRootNode and e>0:
p = (1-e) * p + e * noise[i]
u = q + self.args.cpuct * p * math.sqrt(self.Ns[s]) / (1 + n_s_a)
if u > cur_best:
cur_best = u
#best_act = a
del allBest[:]
allBest.append(a)
elif u == cur_best:
allBest.append(a)
#a = best_act
a = np.random.choice(allBest)
try:
assert a >= 0, "Illegal action="+str(a)
next_s, next_player = self.game.getNextState(canonicalBoard, 1, a)
next_s = self.game.getCanonicalForm(next_s, next_player)
# s1 = self.game.stringRepresentation(next_s)
next_s.id = self.next_board_id(canonicalBoard, s)
if next_s.halfMoves > self.maxHalfMovesForDebug:
self.maxHalfMovesForDebug = next_s.halfMoves
print("info: board.id:", canonicalBoard.id, "=>", next_s.id, ", pieces:", next_s.count_pieces(), ", halfMoves:", next_s.halfMoves, ", no-progress:", next_s.noProgressCount)
#if self.print_boards:
# self.debug.print_to_file(next_s, s1, "Newly generated position, previous one: "+s)
except:
print("Error detected")
print(s)
canonicalBoard.display()
self.debug.print_legal_moves(canonicalBoard)
# a < 0 occurs sometimes in MCTS.search()
move = None if a < 0 else canonicalBoard.parse_action(a)
print("execute_move:", move)
print("executed_moves: ", canonicalBoard.executed_moves)
# print to file
file = self.debug.print_to_file(canonicalBoard, s, "Error detected")
with (open(file,'a+')) as f:
print("execute_move:", move, file=f)
f.closed
raise
#if next_player==1:
# print("long capture detected")
# print("search next_state")
v = self.search(next_s, False)
# trick for long_captures
v *= -next_player
if (s,a) in self.Qsa:
self.Qsa[(s,a)] = (self.Nsa[(s,a)]*self.Qsa[(s,a)] + v)/(self.Nsa[(s,a)]+1)
self.Nsa[(s,a)] += 1
else:
self.Qsa[(s,a)] = v
self.Nsa[(s,a)] = 1
self.Ns[s] += 1
#print("END OF MCTS.search: ", myIndex, " size of map: ", len(self.Ps))
return -v
def next_board_id(self, previousBoard, s_of_previousBoard):
# define board.id
if s_of_previousBoard not in self.Nbnodes:
self.Nbnodes[s_of_previousBoard] = 0
else:
self.Nbnodes[s_of_previousBoard] += 1
next_id = previousBoard.id + "-" + str(self.Nbnodes[s_of_previousBoard])
return next_id
def print_stats(self):
# print collected stats of the instance
print("") # empty line for the case if the carriage was not returned
print("MCTS: Ps.size = ", len(self.Ps), ", Es.size = ", len(self.Es), ", Qsa.size = ", len(self.Qsa))
print("MCTS: actionProbs = ", self.numActionProbs, ", searchCount = ", self.searchIndex)
pm = self.predictionMeter
print("MCTS: nnet.predictions: count=", pm.count, ", times(min/avg/max/total) = ", pm.min, pm.avg, pm.max, pm.sum)