-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy path__init__.py
342 lines (293 loc) · 12.3 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import re
from collections import namedtuple
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Union
import srsly
from thinc.api import Model
from ... import util
from ...errors import Errors
from ...language import BaseDefaults, Language
from ...pipeline import Morphologizer
from ...pipeline.morphologizer import DEFAULT_MORPH_MODEL
from ...scorer import Scorer
from ...symbols import POS
from ...tokens import Doc, MorphAnalysis
from ...training import validate_examples
from ...util import DummyTokenizer, load_config_from_str, registry
from ...vocab import Vocab
from .stop_words import STOP_WORDS
from .syntax_iterators import SYNTAX_ITERATORS
from .tag_bigram_map import TAG_BIGRAM_MAP
from .tag_map import TAG_MAP
from .tag_orth_map import TAG_ORTH_MAP
DEFAULT_CONFIG = """
[nlp]
[nlp.tokenizer]
@tokenizers = "spacy.ja.JapaneseTokenizer"
split_mode = null
"""
@registry.tokenizers("spacy.ja.JapaneseTokenizer")
def create_tokenizer(split_mode: Optional[str] = None):
def japanese_tokenizer_factory(nlp):
return JapaneseTokenizer(nlp.vocab, split_mode=split_mode)
return japanese_tokenizer_factory
class JapaneseTokenizer(DummyTokenizer):
def __init__(self, vocab: Vocab, split_mode: Optional[str] = None) -> None:
self.vocab = vocab
self.split_mode = split_mode
self.tokenizer = try_sudachi_import(self.split_mode)
# if we're using split mode A we don't need subtokens
self.need_subtokens = not (split_mode is None or split_mode == "A")
def __reduce__(self):
return JapaneseTokenizer, (self.vocab, self.split_mode)
def __call__(self, text: str) -> Doc:
# convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces
sudachipy_tokens = self.tokenizer.tokenize(text)
dtokens = self._get_dtokens(sudachipy_tokens)
dtokens, spaces = get_dtokens_and_spaces(dtokens, text)
# create Doc with tag bi-gram based part-of-speech identification rules
words, tags, inflections, lemmas, norms, readings, sub_tokens_list = (
zip(*dtokens) if dtokens else [[]] * 7
)
sub_tokens_list = list(sub_tokens_list)
doc = Doc(self.vocab, words=words, spaces=spaces)
next_pos = None # for bi-gram rules
for idx, (token, dtoken) in enumerate(zip(doc, dtokens)):
token.tag_ = dtoken.tag
if next_pos: # already identified in previous iteration
token.pos = next_pos
next_pos = None
else:
token.pos, next_pos = resolve_pos(
token.orth_,
dtoken.tag,
tags[idx + 1] if idx + 1 < len(tags) else None,
)
# if there's no lemma info (it's an unk) just use the surface
token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface
morph = {}
if dtoken.inf:
# it's normal for this to be empty for non-inflecting types
morph["Inflection"] = dtoken.inf
token.norm_ = dtoken.norm
if dtoken.reading:
# punctuation is its own reading, but we don't want values like
# "=" here
morph["Reading"] = re.sub("[=|]", "_", dtoken.reading)
token.morph = MorphAnalysis(self.vocab, morph)
if self.need_subtokens:
doc.user_data["sub_tokens"] = sub_tokens_list
return doc
def _get_dtokens(self, sudachipy_tokens, need_sub_tokens: bool = True):
sub_tokens_list = (
self._get_sub_tokens(sudachipy_tokens) if need_sub_tokens else None
)
dtokens = [
DetailedToken(
token.surface(), # orth
"-".join([xx for xx in token.part_of_speech()[:4] if xx != "*"]), # tag
";".join([xx for xx in token.part_of_speech()[4:] if xx != "*"]), # inf
token.dictionary_form(), # lemma
token.normalized_form(),
token.reading_form(),
sub_tokens_list[idx]
if sub_tokens_list
else None, # user_data['sub_tokens']
)
for idx, token in enumerate(sudachipy_tokens)
if len(token.surface()) > 0
# remove empty tokens which can be produced with characters like … that
]
# Sudachi normalizes internally and outputs each space char as a token.
# This is the preparation for get_dtokens_and_spaces() to merge the continuous space tokens
return [
t
for idx, t in enumerate(dtokens)
if idx == 0
or not t.surface.isspace()
or t.tag != "空白"
or not dtokens[idx - 1].surface.isspace()
or dtokens[idx - 1].tag != "空白"
]
def _get_sub_tokens(self, sudachipy_tokens):
# do nothing for default split mode
if not self.need_subtokens:
return None
sub_tokens_list = [] # list of (list of list of DetailedToken | None)
for token in sudachipy_tokens:
sub_a = token.split(self.tokenizer.SplitMode.A)
if len(sub_a) == 1: # no sub tokens
sub_tokens_list.append(None)
elif self.split_mode == "B":
sub_tokens_list.append([self._get_dtokens(sub_a, False)])
else: # "C"
sub_b = token.split(self.tokenizer.SplitMode.B)
if len(sub_a) == len(sub_b):
dtokens = self._get_dtokens(sub_a, False)
sub_tokens_list.append([dtokens, dtokens])
else:
sub_tokens_list.append(
[
self._get_dtokens(sub_a, False),
self._get_dtokens(sub_b, False),
]
)
return sub_tokens_list
def score(self, examples):
validate_examples(examples, "JapaneseTokenizer.score")
return Scorer.score_tokenization(examples)
def _get_config(self) -> Dict[str, Any]:
return {"split_mode": self.split_mode}
def _set_config(self, config: Dict[str, Any] = {}) -> None:
self.split_mode = config.get("split_mode", None)
def to_bytes(self, **kwargs) -> bytes:
serializers = {"cfg": lambda: srsly.json_dumps(self._get_config())}
return util.to_bytes(serializers, [])
def from_bytes(self, data: bytes, **kwargs) -> "JapaneseTokenizer":
deserializers = {"cfg": lambda b: self._set_config(srsly.json_loads(b))}
util.from_bytes(data, deserializers, [])
self.tokenizer = try_sudachi_import(self.split_mode)
return self
def to_disk(self, path: Union[str, Path], **kwargs) -> None:
path = util.ensure_path(path)
serializers = {"cfg": lambda p: srsly.write_json(p, self._get_config())}
util.to_disk(path, serializers, [])
def from_disk(self, path: Union[str, Path], **kwargs) -> "JapaneseTokenizer":
path = util.ensure_path(path)
serializers = {"cfg": lambda p: self._set_config(srsly.read_json(p))}
util.from_disk(path, serializers, [])
self.tokenizer = try_sudachi_import(self.split_mode)
return self
class JapaneseDefaults(BaseDefaults):
config = load_config_from_str(DEFAULT_CONFIG)
stop_words = STOP_WORDS
syntax_iterators = SYNTAX_ITERATORS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
class Japanese(Language):
lang = "ja"
Defaults = JapaneseDefaults
@Japanese.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={
"model": DEFAULT_MORPH_MODEL,
"overwrite": True,
"extend": True,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
},
default_score_weights={
"pos_acc": 0.5,
"morph_micro_f": 0.5,
"morph_per_feat": None,
},
)
def make_morphologizer(
nlp: Language,
model: Model,
name: str,
overwrite: bool,
extend: bool,
scorer: Optional[Callable],
):
return Morphologizer(
nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer
)
# Hold the attributes we need with convenient names
DetailedToken = namedtuple(
"DetailedToken", ["surface", "tag", "inf", "lemma", "norm", "reading", "sub_tokens"]
)
def try_sudachi_import(split_mode="A"):
"""SudachiPy is required for Japanese support, so check for it.
It it's not available blow up and explain how to fix it.
split_mode should be one of these values: "A", "B", "C", None->"A"."""
try:
from sudachipy import dictionary, tokenizer
split_mode = {
None: tokenizer.Tokenizer.SplitMode.A,
"A": tokenizer.Tokenizer.SplitMode.A,
"B": tokenizer.Tokenizer.SplitMode.B,
"C": tokenizer.Tokenizer.SplitMode.C,
}[split_mode]
tok = dictionary.Dictionary().create(mode=split_mode)
return tok
except ImportError:
raise ImportError(
"Japanese support requires SudachiPy and SudachiDict-core "
"(https://github.com/WorksApplications/SudachiPy). "
"Install with `pip install sudachipy sudachidict_core` or "
"install spaCy with `pip install spacy[ja]`."
) from None
def resolve_pos(orth, tag, next_tag):
"""If necessary, add a field to the POS tag for UD mapping.
Under Universal Dependencies, sometimes the same Unidic POS tag can
be mapped differently depending on the literal token or its context
in the sentence. This function returns resolved POSs for both token
and next_token by tuple.
"""
# Some tokens have their UD tag decided based on the POS of the following
# token.
# apply orth based mapping
if tag in TAG_ORTH_MAP:
orth_map = TAG_ORTH_MAP[tag]
if orth in orth_map:
return orth_map[orth], None # current_pos, next_pos
# apply tag bi-gram mapping
if next_tag:
tag_bigram = tag, next_tag
if tag_bigram in TAG_BIGRAM_MAP:
current_pos, next_pos = TAG_BIGRAM_MAP[tag_bigram]
if current_pos is None: # apply tag uni-gram mapping for current_pos
return (
TAG_MAP[tag][POS],
next_pos,
) # only next_pos is identified by tag bi-gram mapping
else:
return current_pos, next_pos
# apply tag uni-gram mapping
return TAG_MAP[tag][POS], None
def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"):
# Compare the content of tokens and text, first
words = [x.surface for x in dtokens]
if "".join("".join(words).split()) != "".join(text.split()):
raise ValueError(Errors.E194.format(text=text, words=words))
text_dtokens = []
text_spaces = []
text_pos = 0
# handle empty and whitespace-only texts
if len(words) == 0:
return text_dtokens, text_spaces
elif len([word for word in words if not word.isspace()]) == 0:
assert text.isspace()
text_dtokens = [DetailedToken(text, gap_tag, "", text, text, None, None)]
text_spaces = [False]
return text_dtokens, text_spaces
# align words and dtokens by referring text, and insert gap tokens for the space char spans
for i, (word, dtoken) in enumerate(zip(words, dtokens)):
# skip all space tokens
if word.isspace():
continue
try:
word_start = text[text_pos:].index(word)
except ValueError:
raise ValueError(Errors.E194.format(text=text, words=words)) from None
# space token
if word_start > 0:
w = text[text_pos : text_pos + word_start]
text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None))
text_spaces.append(False)
text_pos += word_start
# content word
text_dtokens.append(dtoken)
text_spaces.append(False)
text_pos += len(word)
# poll a space char after the word
if i + 1 < len(dtokens) and dtokens[i + 1].surface == " ":
text_spaces[-1] = True
text_pos += 1
# trailing space token
if text_pos < len(text):
w = text[text_pos:]
text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None))
text_spaces.append(False)
return text_dtokens, text_spaces
__all__ = ["Japanese"]