-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
143 lines (126 loc) · 5.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from src.utils.constants import DATA_DIR, EXP_DIR
from src.data_processing.absa.pada import AbsaSeq2SeqPadaDataProcessor, AbsaSeq2SeqPadaDataset
from src.data_processing.rumor.pada import RumorPadaDataProcessor, RumorPadaDataset
from src.modeling.token_classification.pada_seq2seq_token_classifier import PadaSeq2SeqTokenClassifierGeneratorMulti
from src.modeling.text_classification.pada_text_classifier import PadaTextClassifierMulti
from src.utils.train_utils import set_seed, ModelCheckpointWithResults, LoggingCallback
from pathlib import Path
from argparse import Namespace, ArgumentParser
from pytorch_lightning import Trainer
from syct import timer
SUPPORTED_MODELS = {
"PADA-rumor": (PadaTextClassifierMulti, RumorPadaDataProcessor, RumorPadaDataset),
"PADA-absa": (PadaSeq2SeqTokenClassifierGeneratorMulti, AbsaSeq2SeqPadaDataProcessor, AbsaSeq2SeqPadaDataset),
}
SUPPORTED_DATASETS = {
"rumor",
"absa"
}
args_dict = dict(
model_name="PADA",
dataset_name="rumor",
src_domains="charliehebdo,ferguson,germanwings-crash,ottawashooting",
trg_domain="sydneysiege",
data_dir=str(DATA_DIR), # path to data files
experiment_dir=str(EXP_DIR), # path to base experiment dir
output_dir=str(EXP_DIR), # path to save the checkpoints
t5_model_name='t5-base',
max_seq_len=128,
learning_rate=5e-5,
weight_decay=1e-5,
adam_epsilon=1e-8,
warmup_steps=0,
train_batch_size=32,
eval_batch_size=32,
num_train_epochs=5,
gradient_accumulation_steps=1,
n_gpu=1,
fast_dev_run=False,
fp_16=False, # if you want to enable 16-bit training then install apex and set this to true
opt_level='O1', # you can find out more on optimisation levels here https://nvidia.github.io/apex/amp.html#opt-levels-and-properties
max_grad_norm=1.0, # if you enable 16-bit training then set this to a sensible value, 0.5 is a good default
seed=41,
beam_size=10,
repetition_penalty=2.0,
length_penalty=1.0,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
num_return_sequences=4,
num_beam_groups=5,
diversity_penalty=0.2,
eval_metrics=["binary_f1", "micro_f1", "macro_f1", "weighted_f1"],
mixture_alpha=0.2,
max_drf_seq_len=20,
proportion_aspect=0.3333,
gen_constant=1.0,
multi_diversity_penalty=0.2,
)
@timer
def train_pada_experiment(args):
if isinstance(args, Namespace):
hparams = args
elif isinstance(args, dict):
hparams = Namespace(**args)
hparams.src_domains = hparams.src_domains.split(",")
experiment_name = f"{hparams.dataset_name.lower()}_{hparams.trg_domain}_{hparams.model_name}_e{hparams.num_train_epochs}_b{hparams.train_batch_size}_a{hparams.mixture_alpha}"
hparams.output_dir = Path(hparams.output_dir) / experiment_name.replace("_", "/")
hparams.output_dir.mkdir(exist_ok=True, parents=True)
hparams.output_dir = str(hparams.output_dir)
main_eval_metric = "binary_f1"
checkpoint_callback = ModelCheckpointWithResults(dirpath=hparams.output_dir,
filename=f"best_dev_{main_eval_metric}",
monitor=f"dev_{main_eval_metric}",
mode="max",
save_top_k=1)
logging_callback = LoggingCallback()
logger = True
callbacks = [logging_callback, checkpoint_callback]
test_ckpt = "best"
model_hparams_dict = vars(hparams)
train_args = dict(
default_root_dir=model_hparams_dict["output_dir"],
accumulate_grad_batches=model_hparams_dict["gradient_accumulation_steps"],
gpus=model_hparams_dict["n_gpu"],
max_epochs=model_hparams_dict["num_train_epochs"],
precision=16 if model_hparams_dict.pop("fp_16") else 32,
amp_level=model_hparams_dict.pop("opt_level"),
gradient_clip_val=model_hparams_dict.pop("max_grad_norm"),
callbacks=callbacks,
logger=logger,
fast_dev_run=model_hparams_dict.pop("fast_dev_run"),
deterministic=True,
benchmark=False
)
set_seed(model_hparams_dict.pop("seed"))
dataset_name = model_hparams_dict.pop("dataset_name")
if dataset_name == "rumor":
model_hparams_dict.pop("proportion_aspect")
model_hparams_dict.pop("multi_diversity_penalty")
else:
model_hparams_dict.pop("max_drf_seq_len")
model_hparams_dict.pop("gen_constant")
model_name = model_hparams_dict.pop("model_name")
model_obj, data_procesor_obj, dataset_obj = SUPPORTED_MODELS[f"{model_name}-{dataset_name}"]
model_hparams_dict["data_procesor_obj"] = data_procesor_obj
model_hparams_dict["dataset_obj"] = dataset_obj
model = model_obj(**model_hparams_dict)
trainer = Trainer(**train_args)
trainer.fit(model)
trainer.test(ckpt_path=test_ckpt)
def main():
parser = ArgumentParser()
for key, val in args_dict.items():
if key == "dataset_name":
parser.add_argument(f"--{key}", default=val, type=type(val),
choices=SUPPORTED_DATASETS)
elif key == "model_name":
parser.add_argument(f"--{key}", default=val, type=type(val),
choices=("PADA",))
elif type(val) is bool:
parser.add_argument(f"--{key}", default=val, action="store_true", required=False)
else:
parser.add_argument(f"--{key}", default=val, type=type(val), required=False)
args = parser.parse_args()
train_pada_experiment(args)
if __name__ == "__main__":
main()