-
Notifications
You must be signed in to change notification settings - Fork 1
/
script.js
616 lines (563 loc) · 26.4 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
const debug_fps = true
const loop_secs = 10
const max_res_width = 1920
import load_video from './utils/videoloader.js'
import toggle_fullscreen from './utils/fullscreen.js'
import {
PoseLandmarker,
FaceLandmarker,
ImageSegmenter,
FilesetResolver,
DrawingUtils
} from 'https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.18/vision_bundle.mjs'
const mediapipe_wasm_url = 'https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.18/wasm'
import {AutoModel, AutoProcessor, RawImage, env as transformersEnv} from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.2/dist/transformers.min.js'
import 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@4.22.0/dist/tf.min.js'
import 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgpu@4.22.0/dist/tf-backend-webgpu.min.js'
import * as ort from 'https://cdn.jsdelivr.net/npm/onnxruntime-web@1.20.0/dist/ort.webgpu.min.mjs'
ort.env.wasm.wasmPaths = 'https://cdn.jsdelivr.net/npm/onnxruntime-web@1.20.0/dist/'
import SwissGL from './libs/swissgl/swissgl.mjs'
import DotCamera from './models/dotcamera.js'
import * as THREE from 'https://cdn.jsdelivr.net/npm/three@0.170.0/build/three.module.min.js'
import RuttEtraIzer from './models/ruttetraizer.js'
function getGPUInfo() {
const gl = document.createElement('canvas').getContext('webgl')
if (!gl)
return 'Failed getting GPU info'
const ext = gl.getExtension('WEBGL_debug_renderer_info')
return gl.getParameter(ext ? ext.UNMASKED_RENDERER_WEBGL : gl.RENDERER)
}
console.log(getGPUInfo())
const canvasCtx = canvas.getContext('2d')
if (!('CropTarget' in window &&
'getDisplayMedia' in navigator.mediaDevices &&
'MediaStreamTrackProcessor' in window &&
'MediaStreamTrackGenerator' in window &&
'VideoFrame' in window)) {
canvasCtx.font = '60px sans-serif'
canvasCtx.fillStyle = 'white'
canvasCtx.textAlign = 'center'
fix_size_clear(canvasCtx, 1280, 720)
canvasCtx.fillText('Not supported by your browser :(', canvas.width / 2, canvas.height/2 - 100)
canvasCtx.fillText('Try in Chromium desktop!', canvas.width / 2, canvas.height/2 + 100)
canvas.textContent = 'Not supported by your browser. Try in Chromium desktop!'
}
let skip_changed
video_url.addEventListener('keydown', e => {
if (e.key == 'Enter' || e.key == 'Tab') {
skip_changed = true
get_video(e.currentTarget)
}
})
video_url.addEventListener('change', e => {
if (!skip_changed)
get_video(e.currentTarget)
skip_changed = false
})
video_url.addEventListener('click', e => {
skip_changed = false
if (e.currentTarget.value)
capture()
})
video_url.addEventListener('focus', e => {
skip_changed = false
e.currentTarget.select() // Broken in Chrome. See: https://issues.chromium.org/issues/40345011#comment45
})
let loop_mode, dotcamera_mode
effect.addEventListener('change', e => {
if (e.currentTarget.value)
capture()
loop_mode = null
if (e.currentTarget.value == 'loop' || e.currentTarget.value == 'random') {
loop_mode = e.currentTarget.value
dotcamera_mode = 0
loop_effects()
}
})
document.addEventListener('keydown', e => {
if (e.altKey && (e.key == 'ArrowUp' || e.key == 'ArrowDown' || e.target != video_url && e.key == 'Enter')) {
e.preventDefault()
if (e.key == 'Enter')
get_video(video_url, false)
else {
const effects = [...effect.querySelectorAll('option:not([disabled])')].map(e => e.value)
effect.value = effects[(effects.length+effects.indexOf(effect.value)+(e.key == 'ArrowUp' ? -1 : 1)) % effects.length]
effect.dispatchEvent(new Event('change'))
}
}
})
function loop_effects() {
if (!loop_mode || !capture_started)
return
// dotcamera_mode += effect.value == 'dotcamera_swissgl'
const effects = [...effect.querySelectorAll('option:not([disabled]):not([label="meta" i] > *)')].map(e => e.value)
effect.value = effects[(effects.indexOf(effect.value)+(loop_mode == 'random' ? Math.random()*(effects.length-1) + 1 | 0 : 1)) % effects.length]
setTimeout(loop_effects, loop_secs * 1000)
}
function get_video(input_elem, reload_youtube) {
location.hash = load_video(input_elem, orig_video, reload_youtube)[0]
capture()
}
function show_hide_cursor(elem) {
elem.classList.remove('show_cursor')
elem.offsetWidth // Restart animation, see: https://css-tricks.com/restart-css-animation/
elem.classList.add('show_cursor')
}
canvas.addEventListener('mousemove', e => show_hide_cursor(e.currentTarget))
// BT.709 limited range YUV to RGB, https://chromium.googlesource.com/libyuv/libyuv/+/e462/source/row_common.cc#1649
function yuv2rgb(Y, U, V, format='RGB') {
Y = (Y-16) * 1.164
U -= 128
V -= 128
const R = Y + 1.793*V
const G = Y - .213*U - .533*V
const B = Y + 2.112*U
if (format.startsWith('BGR'))
return [B, G, R]
return [R, G, B]
}
function cross_product(A, B, C) {
return (B[0]-A[0])*(C[1]-A[1]) - (B[1]-A[1])*(C[0]-A[0])
}
function is_convex(A, B, C, D) {
const cross1 = cross_product(A, B, C)
const cross2 = cross_product(B, C, D)
const cross3 = cross_product(C, D, A)
const cross4 = cross_product(D, A, B)
return (cross1 > 0 && cross2 > 0 && cross3 > 0 && cross4 > 0) ||
(cross1 < 0 && cross2 < 0 && cross3 < 0 && cross4 < 0)
}
function is_same_side(P1, P2, A, B) {
const cross1 = cross_product(A, B, P1)
const cross2 = cross_product(A, B, P2)
return cross1 * cross2 >= 0
}
function is_inside_convex(P, [A, B, C, D]) {
return is_same_side(P, C, A, B) &&
is_same_side(P, D, B, C) &&
is_same_side(P, A, C, D) &&
is_same_side(P, B, D, A)
}
function fix_size_clear(canvasCtx, w, h) {
const canvas = canvasCtx.canvas
if (canvas.width != w || canvas.height != h) {
canvas.width = w
canvas.height = h
} else
canvasCtx.clearRect(0, 0, w, h)
}
const colors = ['lime', 'red', 'cyan', 'magenta']
const effect_funcs = {
pose_landmarks: (videoFrame, poseLandmarker, canvasCtx, drawingUtils) => {
poseLandmarker.detectForVideo(videoFrame, performance.now(), result => {
fix_size_clear(canvasCtx, 1920, 1080)
canvasCtx.save()
result.landmarks.forEach((landmarks, i) => {
drawingUtils.drawConnectors(landmarks, PoseLandmarker.POSE_CONNECTIONS, {color: colors[i % colors.length], lineWidth: 5})
const color = colors[(i+1) % colors.length]
drawingUtils.drawLandmarks(landmarks, {color: color, fillColor: color, lineWidth: 0, radius: 5})
})
canvasCtx.restore()
})
},
chest_xray: (W, H, rgbx, models, videoFrame) => {
const orig_rgbx = rgbx.slice()
models.pose.detectForVideo(videoFrame, performance.now(), result =>
result.landmarks.forEach(landmarks => {
if (Math.min(landmarks[11].visibility, landmarks[12].visibility) >= .9 && is_convex([landmarks[11].x, landmarks[11].y], [landmarks[12].x, landmarks[12].y], [landmarks[24].x, landmarks[24].y], [landmarks[23].x, landmarks[23].y])) {
const ax = landmarks[11].x * W
const ay = landmarks[11].y * H
const bx = landmarks[12].x * W
const by = landmarks[12].y * H
const cx = (bx+landmarks[24].x*W) / 2
const cy = (by+landmarks[24].y*H) / 2
const dx = (ax+landmarks[23].x*W) / 2
const dy = (ay+landmarks[23].y*H) / 2
const min_x = Math.max(Math.min(ax, bx, cx, dx) | 0, 0)
const max_x = Math.min(Math.max(ax, bx, cx, dx), W - 1)
const min_y = Math.max(Math.min(ay, by, cy, dy) | 0, 0)
const max_y = Math.min(Math.max(ay, by, cy, dy), H - 1)
const vertices = [[ax, ay], [bx, by], [cx, cy], [dx, dy]]
for (let y = min_y; y <= max_y; y++)
for (let x = min_x; x <= max_x; x++)
if (is_inside_convex([x, y], vertices)) {
const index4 = (x+y*W) * 4
rgbx[index4] = 255 - orig_rgbx[index4]
rgbx[index4 + 1] = 255 - orig_rgbx[index4 + 1]
rgbx[index4 + 2] = 255 - orig_rgbx[index4 + 2]
}
}
})
)
},
laser_eyes: (W, H, rgbx, models, videoFrame, canvasCtx) => {
fix_size_clear(canvasCtx, W, H)
canvasCtx.save()
models.face.detectForVideo(videoFrame, performance.now()).faceLandmarks.forEach((landmarks, i) => {
// Landmarks: https://storage.googleapis.com/mediapipe-assets/documentation/mediapipe_face_landmark_fullsize.png
const eye1 = landmarks[468]
const eye2 = landmarks[473]
eye1.x *= W
eye1.y *= H
eye2.x *= W
eye2.y *= H
const avg = {x: (eye1.x+eye2.x) / 2, y: (eye1.y+eye2.y) / 2}
const mid = {x: (landmarks[6].x+landmarks[168].x) * W / 2, y: (landmarks[6].y+landmarks[168].y) * H / 2}
let vec_x = mid.x - avg.x
let vec_y = mid.y - avg.y
if (Math.sqrt(vec_x**2 + vec_y**2) > 2) {
canvasCtx.strokeStyle = 'rgb(255 0 0 / 80%)'
canvasCtx.shadowColor = 'red'
canvasCtx.lineCap = 'round'
const thickness = Math.sqrt((eye2.x-eye1.x)**2 + (eye2.y-eye1.y)**2 + ((eye2.z-eye1.z)*W)**2) / 20
canvasCtx.lineWidth = thickness
canvasCtx.shadowBlur = thickness * 1.5
canvasCtx.beginPath()
canvasCtx.moveTo(eye1.x, eye1.y)
canvasCtx.lineTo(eye1.x + vec_x * W, eye1.y + vec_y * W)
canvasCtx.moveTo(eye2.x, eye2.y)
canvasCtx.lineTo(eye2.x + vec_x * W, eye2.y + vec_y * W)
canvasCtx.stroke()
} else {
canvasCtx.fillStyle = 'rgb(255 0 0 / 50%)'
canvasCtx.fillRect(0, 0, canvasCtx.canvas.width, canvasCtx.canvas.height)
}
})
canvasCtx.restore()
},
background_segmentation: (W, H, rgbx, models, videoFrame) => {
models.segment.segmentForVideo(videoFrame, performance.now(), result =>
result.categoryMask.getAsFloat32Array().forEach((cat, index) => {
if (!cat)
rgbx[index * 4] = rgbx[index*4 + 1] = rgbx[index*4 + 2] = 0
})
)
},
modnet_transformers_webgpu: async (W, H, rgbx, models) => {
const {pixel_values} = await models.modnet_preproc(new RawImage(rgbx, W, H, 4).rgb())
const {output} = await models.modnet({input: pixel_values})
const {data} = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(W, H)
for (let i = 0; i < data.length; i++) {
const alpha = data[i] / 255
rgbx[i * 4] *= alpha
rgbx[i*4 + 1] *= alpha
rgbx[i*4 + 2] *= alpha
}
},
cartoonization_tfjs_webgpu: (W, H, bgrx, models, videoFrame, canvasCtx) => {
const bgr = new Float32Array(H * W * 3)
for (let i = 0; i < bgr.length; i++)
bgr[i] = bgrx[(i/3|0)*4 + i%3]
tf.tidy(() => tf.browser.draw(models.cartoon.execute(tf.tensor4d(bgr, [1, H, W, 3])
.resizeBilinear([720, 720]).div(127.5).sub(1)).squeeze().add(1).div(2).reverse(-1), canvasCtx.canvas))
},
teed_edge_detection_ort_webgpu: async (W, H, bgrx, models) => {
const bgr = new Uint8Array(H * W * 3)
for (let i = 0; i < bgr.length; i++)
bgr[i] = bgrx[(i/3|0)*4 + i%3]
const {output: {data}} = await models.teed.run({input: new ort.Tensor(bgr, [1, H, W, 3])})
for (let i = 0; i <data.length; i++)
bgrx[i * 4] = bgrx[i*4 + 1] = bgrx[i*4 + 2] = data[i]
},
dotcamera_swissgl: (W, H, rgbx, models, videoFrame, canvasCtx, gl_engines) => {
const canvas = canvasCtx.canvas
const glsl = gl_engines.swissgl
const gl_canvas = glsl.gl.canvas
if (canvas.width != W || canvas.height != H || gl_canvas.width != W || gl_canvas.height != H) {
canvas.width = gl_canvas.width = W
canvas.height = gl_canvas.height = H
}
models.dotcamera.frame(videoFrame, {canvasSize: [W, H], DPR: 1.5, random_mode: loop_mode ? dotcamera_mode : 0})
canvasCtx.drawImage(gl_canvas, 0, 0)
},
ruttetraizer_threejs: (W, H, rgbx, models, videoFrame, canvasCtx, gl_engines) => {
const canvas = canvasCtx.canvas
const renderer = gl_engines.threejs
const gl_canvas = renderer.domElement
if (canvas.width != W || canvas.height != H || gl_canvas.width != W || gl_canvas.height != H) {
canvas.width = gl_canvas.width = W
canvas.height = gl_canvas.height = H
renderer.setViewport(0, 0, W, H)
}
models.ruttetra.frame(W, H, rgbx, {scanStep: 7, depth: 100, random_mode: loop_mode})
canvasCtx.drawImage(gl_canvas, 0, 0)
},
bayer_dithering: (W, H, rgbx, yuv) => {
const bayer_r = 96
const threshold = 128
const matrix = [[ -0.5 , 0 , -0.375 , 0.125 ],
[ 0.25 , -0.25 , 0.375 , -0.125 ],
[ -0.3125, 0.1875, -0.4375, 0.0625 ],
[ 0.4375, -0.0625, 0.3125, -0.1875 ]]
const bayer_n = matrix.length
const downscale = 3
for (let y = 0; y < H; y += downscale)
for (let x = 0; x < W; x += downscale) {
const val = (yuv[x + y*W]-16)*1.164 + bayer_r*matrix[y / downscale % bayer_n][x / downscale % bayer_n] >= threshold ? [237, 230, 205] : [33, 38, 63]
for (let j = 0; j < downscale; j++)
for (let i = 0; i < downscale; i++) {
const index4 = ((x+i)+(y+j)*W) * 4
;[rgbx[index4], rgbx[index4 + 1], rgbx[index4 + 2]] = val
}
}
},
pixel_sorting: (W, H, rgbx) => {
for (let y = 0; y < H; y++) {
const line = []
let start
let end
for (let x = 0; x <= W; x++) {
let interval
if (x < W) {
const index4 = (x+y*W) * 4
const [R, G, B] = [rgbx[index4], rgbx[index4 + 1], rgbx[index4 + 2]]
const L = (Math.min(R, G, B) + Math.max(R, G, B)) / 2
line.push({R, G, B, L})
if (L > 56 && L < 204) {
start ??= x
end = x
interval = true
}
}
if (!interval && end - start) {
const part = line.splice(start, end - start + 1)
part.sort((a, b) => (a.L - b.L))
line.splice(start, 0, ...part)
start = end = null
}
}
for (let x = 0; x < W; x++) {
const index4 = (x+y*W) * 4
const {R, G, B} = line[x]
;[rgbx[index4], rgbx[index4 + 1], rgbx[index4 + 2]] = [R, G, B]
}
}
},
rgb_split: (W, H, rgbx) => {
let shift_gx = W / 200 * devicePixelRatio | 0
let shift_gy = H / 200 * devicePixelRatio | 0
let shift_rx = 2 * shift_gx
let shift_ry = 2 * shift_gy
for (let y = 0; y < H; y++)
for (let x = 0; x < W; x++) {
const index4 = (x+y*W) * 4
rgbx[index4] = rgbx[(Math.min(x + shift_rx, W - 1)+Math.min(y + shift_ry, H - 1)*W) * 4]
rgbx[index4 + 1] = rgbx[(Math.min(x + shift_gx, W - 1)+Math.min(y + shift_gy, H - 1)*W)*4 + 1]
}
},
}
let frames = 0
if (debug_fps)
setInterval(() => {if (frames) console.debug(`(${out_video.videoWidth}x${out_video.videoHeight}) fps ${frames == 1 ? '<' : ''}=`, frames); frames = 0}, 1000)
let capture_started
async function capture() {
if (capture_started || orig_video.src == 'about:blank')
return
capture_started = true
let stream
try {
stream = await navigator.mediaDevices.getDisplayMedia({
preferCurrentTab: true,
surfaceSwitching: 'exclude',
video: {
aspectRatio: 16 / 9,
cursor: 'never', // Not implemented yet. See: https://issues.chromium.org/issues/40649204
width: {max: max_res_width || undefined},
},
})
} catch (e) {
console.warn(e)
capture_started = false
return
}
const [track] = stream.getVideoTracks()
track.addEventListener('ended', () => capture_started = false)
if ('RestrictionTarget' in window) {
// For fullscreen zoom of output (with right-click) enable
// chrome://flags/#element-capture in Google Chrome, or
// chrome://flags/#enable-experimental-web-platform-features in Chromium
// See: https://developer.chrome.com/docs/web-platform/element-capture
// Note that pinch zoom pauses the stream: https://issues.chromium.org/issues/337337168
const restrictionTarget = await RestrictionTarget.fromElement(orig_video)
await track.restrictTo(restrictionTarget)
videos.oncontextmenu = e => toggle_fullscreen(e)
} else {
const cropTarget = await CropTarget.fromElement(orig_video)
await track.cropTo(cropTarget)
}
const vision = await FilesetResolver.forVisionTasks(mediapipe_wasm_url)
// https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker/web_js
const pose_model_size = 'lite' // 'full', 'heavy'
const poseLandmarker = await PoseLandmarker.createFromOptions(
vision,
{
baseOptions: {
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_${pose_model_size}/float16/latest/pose_landmarker_${pose_model_size}.task`,
delegate: 'GPU'
},
runningMode: 'VIDEO',
numPoses: 3,
minPoseDetectionConfidence: .5,
minPosePresenceConfidence: .5,
minTrackingConfidence: .5,
}
)
// https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/web_js
// Note: This is currently only for short range faces. See: https://github.com/google-ai-edge/mediapipe/issues/4869
const faceLandmarker = await FaceLandmarker.createFromOptions(
vision, {
baseOptions: {
modelAssetPath: 'https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/latest/face_landmarker.task',
delegate: 'GPU'
},
runningMode: 'VIDEO',
numFaces: 3,
minFaceDetectionConfidence: .5,
minFacePresenceConfidence: .5,
minTrackingConfidence: .5,
}
)
// https://ai.google.dev/edge/mediapipe/solutions/vision/image_segmenter/web_js
const imageSegmenter = await ImageSegmenter.createFromOptions(
vision, {
baseOptions: {
modelAssetPath: 'https://storage.googleapis.com/mediapipe-models/image_segmenter/deeplab_v3/float32/latest/deeplab_v3.tflite',
delegate: 'GPU'
},
runningMode: 'VIDEO',
outputCategoryMask: true,
outputConfidenceMasks: false,
}
)
let need_select
function disable_option(value) {
const option = effect.querySelector(`option[value=${value}]`)
option.disabled = true
need_select ||= option.selected
}
let modnet, modnet_preproc
try {
// https://github.com/ZHKKKe/MODNet
// https://huggingface.co/Xenova/modnet
const modnet_path = 'Xenova/modnet'
modnet = await AutoModel.from_pretrained(modnet_path, {quantized: false, device: 'webgpu', dtype: 'fp32'})
modnet_preproc = await AutoProcessor.from_pretrained(modnet_path)
} catch (e) {
console.warn(e)
disable_option('modnet_transformers_webgpu')
}
let queue, cartoon
try {
await tf.setBackend('webgpu')
queue = tf.backend().queue
// https://github.com/SystemErrorWang/White-box-Cartoonization
// https://github.com/vladmandic/anime
cartoon = await tf.loadGraphModel('models/cartoon/whitebox.json')
} catch (e) {
console.warn(e)
disable_option('cartoonization_tfjs_webgpu')
}
let teed
try {
// https://github.com/xavysp/TEED
teed = await ort.InferenceSession.create('models/teed/teed16.onnx', {executionProviders: ['webgpu']})
} catch (e) {
console.warn(e)
disable_option('teed_edge_detection_ort_webgpu')
}
// https://github.com/google/swissgl/blob/main/demo/DotCamera.js
const gl = new OffscreenCanvas(0, 0).getContext('webgl2', {alpha: false, antialias: true})
const glsl = SwissGL(gl)
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true)
const dotcamera = new DotCamera(glsl, {dayMode: false, rgbMode: false})
// https://www.airtightinteractive.com/2011/06/rutt-etra-izer/
let renderer, ruttetraizer
try {
renderer = new THREE.WebGLRenderer({antialias: true, powerPreference: 'high-performance', sortObjects: false})
ruttetraizer = new RuttEtraIzer(THREE, renderer, canvas)
} catch (e) {
console.warn(e)
disable_option('ruttetraizer_threejs')
}
const gl_engines = {swissgl: glsl, threejs: renderer}
if (need_select)
effect.value = effect.querySelector('option:not([disabled])').value
const models = {pose: poseLandmarker,
face: faceLandmarker,
segment: imageSegmenter,
modnet: modnet,
modnet_preproc: modnet_preproc,
cartoon: cartoon,
teed: teed,
dotcamera: dotcamera,
ruttetra: ruttetraizer,
}
const drawingUtils = new DrawingUtils(canvasCtx)
const trackProcessor = new MediaStreamTrackProcessor({track: track})
const trackGenerator = new MediaStreamTrackGenerator({kind: 'video'})
const transformer = new TransformStream({
async transform(videoFrame, controller) {
if (effect.value.includes('pose_landmarks'))
effect_funcs.pose_landmarks(videoFrame, poseLandmarker, canvasCtx, drawingUtils)
else if (!effect.value.includes('laser') && !effect.value.includes('swissgl') && !effect.value.includes('threejs') && (canvas.width || canvas.height))
canvas.width = canvas.height = 0
const W = videoFrame.codedWidth
const H = videoFrame.codedHeight
const rgbx = new Uint8ClampedArray(H * W * 4)
let format = 'RGBX'
if (effect.value != 'pose_landmarks') {
let yuv_data = []
if (effect.value.includes('dithering')) {
const yuv = new Uint8ClampedArray(H * W * 1.5)
const layout = await videoFrame.copyTo(yuv)
const {stride, offset: Voffset} = layout[1]
const {offset: Uoffset} = layout[2]
yuv_data = [yuv, stride, Voffset, Uoffset]
} else if (!effect.value.includes('swissgl')) {
if (effect.value.includes('cartoon') || effect.value.includes('teed'))
format = 'BGRX'
const layout = await videoFrame.copyTo(rgbx, {format: format})
if (layout.length == 3) // Fallback if copyTo(..., format) is not supported (Chrome < 127)
{
const yuv = rgbx.slice(0, H * W * 1.5)
const {stride, offset: Voffset} = layout[1]
const {offset: Uoffset} = layout[2]
for (let y = 0; y < H; y++) {
const yUV = (y >> 1) * stride
for (let x = 0; x < W; x++) {
const xUV = x >> 1
const Y = yuv[x + y*W]
const U = yuv[Voffset + xUV + yUV]
const V = yuv[Uoffset + xUV + yUV]
const index4 = (x+y*W) * 4
;[rgbx[index4], rgbx[index4 + 1], rgbx[index4 + 2]] = yuv2rgb(Y, U, V, format)
rgbx[index4 + 3] = 255 // Circumvent Chrome issue where alpha is not being ignored: https://issues.chromium.org/issues/360354555
}
}
}
}
if (effect.value in effect_funcs && !effect.value.includes('recod')) {
await effect_funcs[effect.value](W, H, rgbx, ...yuv_data, models, videoFrame, canvasCtx, gl_engines)
if (effect.value.includes('tfjs_webgpu'))
await queue.onSubmittedWorkDone() // This reduces lag. See also: https://github.com/tensorflow/tfjs/issues/6683#issuecomment-1219505611, https://github.com/gpuweb/gpuweb/issues/3762#issuecomment-1400514317
}
}
const init = {
codedHeight: H,
codedWidth: W,
format: format,
alpha: 'discard',
timestamp: videoFrame.timestamp,
}
videoFrame.close()
if (rgbx[3] == 0) // Circumvent Chrome issue where alpha is not being ignored: https://issues.chromium.org/issues/360354555
for (let i = 3; i < rgbx.length; i += 4)
rgbx[i] = 255
controller.enqueue(new VideoFrame(rgbx, init))
frames++
}
})
trackProcessor.readable.pipeThrough(transformer).pipeTo(trackGenerator.writable)
out_video.srcObject = new MediaStream([trackGenerator])
loop_effects()
}