forked from cvg/LightGlue
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathexport.py
203 lines (183 loc) · 6.57 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
from typing import List
import torch
from lightglue_onnx import DISK, LightGlue, LightGlueEnd2End, SuperPoint
from lightglue_onnx.end2end import normalize_keypoints
from lightglue_onnx.utils import load_image, rgb_to_grayscale
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--img_size",
nargs="+",
type=int,
default=512,
required=False,
help="Sample image size for ONNX tracing. If a single integer is given, resize the longer side of the image to this value. Otherwise, please provide two integers (height width).",
)
parser.add_argument(
"--extractor_type",
type=str,
default="superpoint",
choices=["superpoint", "disk"],
required=False,
help="Type of feature extractor. Supported extractors are 'superpoint' and 'disk'. Defaults to 'superpoint'.",
)
parser.add_argument(
"--extractor_path",
type=str,
default=None,
required=False,
help="Path to save the feature extractor ONNX model.",
)
parser.add_argument(
"--lightglue_path",
type=str,
default=None,
required=False,
help="Path to save the LightGlue ONNX model.",
)
parser.add_argument(
"--end2end",
action="store_true",
help="Whether to export an end-to-end pipeline instead of individual models.",
)
parser.add_argument(
"--dynamic", action="store_true", help="Whether to allow dynamic image sizes."
)
# Extractor-specific args:
parser.add_argument(
"--max_num_keypoints",
type=int,
default=None,
required=False,
help="Maximum number of keypoints outputted by the extractor.",
)
return parser.parse_args()
def export_onnx(
img_size=512,
extractor_type="superpoint",
extractor_path=None,
lightglue_path=None,
img0_path="assets/sacre_coeur1.jpg",
img1_path="assets/sacre_coeur2.jpg",
end2end=False,
dynamic=False,
max_num_keypoints=None,
):
# Handle args
if isinstance(img_size, List) and len(img_size) == 1:
img_size = img_size[0]
if extractor_path is not None and end2end:
raise ValueError(
"Extractor will be combined with LightGlue when exporting end-to-end model."
)
if extractor_path is None:
extractor_path = f"weights/{extractor_type}.onnx"
if max_num_keypoints is not None:
extractor_path = extractor_path.replace(
".onnx", f"_{max_num_keypoints}.onnx"
)
if lightglue_path is None:
lightglue_path = (
f"weights/{extractor_type}_lightglue"
f"{'_end2end' if end2end else ''}"
".onnx"
)
# Sample images for tracing
image0, scales0 = load_image(img0_path, resize=img_size)
image1, scales1 = load_image(img1_path, resize=img_size)
# Models
extractor_type = extractor_type.lower()
if extractor_type == "superpoint":
# SuperPoint works on grayscale images.
image0 = rgb_to_grayscale(image0)
image1 = rgb_to_grayscale(image1)
extractor = SuperPoint(max_num_keypoints=max_num_keypoints).eval()
lightglue = LightGlue(extractor_type).eval()
elif extractor_type == "disk":
extractor = DISK(max_num_keypoints=max_num_keypoints).eval()
lightglue = LightGlue(extractor_type).eval()
else:
raise NotImplementedError(
f"LightGlue has not been trained on {extractor_type} features."
)
# ONNX Export
if end2end:
pipeline = LightGlueEnd2End(extractor, lightglue).eval()
dynamic_axes = {
"kpts0": {1: "num_keypoints0"},
"kpts1": {1: "num_keypoints1"},
"matches0": {0: "num_matches0"},
"mscores0": {0: "num_matches0"},
}
if dynamic:
dynamic_axes.update(
{
"image0": {2: "height0", 3: "width0"},
"image1": {2: "height1", 3: "width1"},
}
)
torch.onnx.export(
pipeline,
(image0[None], image1[None]),
lightglue_path,
input_names=["image0", "image1"],
output_names=[
"kpts0",
"kpts1",
"matches0",
"mscores0",
],
opset_version=17,
dynamic_axes=dynamic_axes,
)
else:
# Export Extractor
dynamic_axes = {
"keypoints": {1: "num_keypoints"},
"scores": {1: "num_keypoints"},
"descriptors": {1: "num_keypoints"},
}
if dynamic:
dynamic_axes.update({"image": {2: "height", 3: "width"}})
else:
print(
f"WARNING: Exporting without --dynamic implies that the {extractor_type} extractor's input image size will be locked to {image0.shape[-2:]}"
)
extractor_path = extractor_path.replace(
".onnx", f"_{image0.shape[-2]}x{image0.shape[-1]}.onnx"
)
torch.onnx.export(
extractor,
image0[None],
extractor_path,
input_names=["image"],
output_names=["keypoints", "scores", "descriptors"],
opset_version=17,
dynamic_axes=dynamic_axes,
)
# Export LightGlue
feats0, feats1 = extractor(image0[None]), extractor(image1[None])
kpts0, scores0, desc0 = feats0
kpts1, scores1, desc1 = feats1
kpts0 = normalize_keypoints(kpts0, image0.shape[1], image0.shape[2])
kpts1 = normalize_keypoints(kpts1, image1.shape[1], image1.shape[2])
torch.onnx.export(
lightglue,
(kpts0, kpts1, desc0, desc1),
lightglue_path,
input_names=["kpts0", "kpts1", "desc0", "desc1"],
output_names=["matches0", "mscores0"],
opset_version=17,
dynamic_axes={
"kpts0": {1: "num_keypoints0"},
"kpts1": {1: "num_keypoints1"},
"desc0": {1: "num_keypoints0"},
"desc1": {1: "num_keypoints1"},
"matches0": {0: "num_matches0"},
"mscores0": {0: "num_matches0"},
},
)
if __name__ == "__main__":
args = parse_args()
export_onnx(**vars(args))