-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_rl.py
848 lines (682 loc) · 32.1 KB
/
train_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example of fine-tuning OpenAI GPT-2 language model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
import importlib
import numpy as np
import tensorflow as tf
import texar as tx
import copy
import pickle
sys.path.append('../comet-commonsense')
from data_utils import model_utils, processor, utils
# import torch
# from pathlib import Path
from fast_bert.prediction import BertClassificationPredictor
from Reinforcement.rewards_v2 import get_reward, format_generated_stories_for_clf, _get_text, generate_all_valid_sample_dict
from pathlib import Path
from eval import evaluate_full
# pylint: disable=invalid-name, too-many-locals, too-many-statements, no-member
# pylint: disable=invalid-name, too-many-locals, too-many-statements, no-member
# pylint: disable=too-many-branches
run_opts = tf.RunOptions(report_tensor_allocations_upon_oom = True)
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("checkpoint", None,
"Model checkpoint to resume training or for test.")
flags.DEFINE_string("pretrain_checkpoint",
"gpt2_pretrained_models/model_117M/model.ckpt",
"OpenAI pretrained model checkpoint. Ignored if "
"'--checkpoint' is specified.")
flags.DEFINE_string("pretrained_model_dir", "gpt2_pretrained_models/model_117M",
"The directory of pretrained model, for loading vocabuary, "
"etc.")
flags.DEFINE_float("temperature", 0.7,
"Softmax temperature for top-k sample decoding. Must be "
"strictly greater than 0. Defaults to 0.7.")
flags.DEFINE_integer("top_k", 40,
"The number of top most likely candidates from a vocab "
"distribution.")
flags.DEFINE_string("config_train", "configs.config_train",
"Configurations of GPT-2 training, including data and "
"optimization hyperparameters.")
flags.DEFINE_string("config_type", "texar",
"The configuration file type. Set to 'json' if the GPT-2 "
"config file is in the same type of the official GPT-2 "
"config file. Set to 'texar' if GPT-2 config file is in "
"Texar type.")
flags.DEFINE_string("config_model", "configs.config_model",
"The model configuration file to configure the model. "
"The config file type is define by the 'config_type',"
"it be of texar type or json type."
"For '--config_type=json', set the json config file path"
"like: '--config_model gpt2_pretrained_models/model_117M/"
"hparams.json';"
"For '--config_type=texar', set the texar config file "
"like: '--config_model configs.config_model'.")
flags.DEFINE_string("output_dir", "output/remove_space/",
"The output directory where the model checkpoints will be "
"written.")
flags.DEFINE_string("clf_label_dir", "emotion_classifier/", #ROC_cloze_data
" The directory where emotion labels for emotion classifier are"
"written in a file named labels.csv.")
flags.DEFINE_string("clf_output_dir", "emotion_classifier/checkpoint/bert/model_out/", ##ROC_cloze_data
"The output directory where the emotion classifier checkpoints are "
"saved.")
flags.DEFINE_string("rl_method", "clf",
"train rl-clf or comet")
flags.DEFINE_string("best_model", "emotion",
"save best model based on which metric during validation?")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_test", False, "Whether to run test on the test set.")
flags.DEFINE_bool("distributed", False, "Whether to run in distributed mode.")
flags.DEFINE_bool("finetune", False, "Whether to test on finetune mode.")
flags.DEFINE_bool("sc_rl", False, "Whether to train with self-critical RL")
flags.DEFINE_bool("beam", False, "Whether to do a beam search for inference?")
config_train = importlib.import_module(FLAGS.config_train)
def _log(msg, log_fn=None):
tf.logging.info(msg)
if log_fn is None:
log_fn = os.path.join(FLAGS.output_dir, config_train.name, 'log.txt')
with open(log_fn, 'a') as flog:
flog.write(msg + '\n')
def _ids_to_text(ids, proc):
eos_token_id = proc.encoder['<|endoftext|>']
if ids[0] == eos_token_id:
ids = ids[1:]
text = proc.decode(ids)
return text
def _fix(input_ids, eos_token_id):
input_ids = copy.deepcopy(input_ids)
# for i in range(len(input_ids)):
# if bos_token_id is not None:
# input_ids[i] = [bos_token_id] + input_ids[i]
# if eos_token_id is not None:
# input_ids[i] = input_ids[i] + [eos_token_id]
length = [len(ids) for ids in input_ids]
max_length = max(length)
for i in range(len(input_ids)):
while len(input_ids[i]) < max_length:
input_ids[i].append(eos_token_id)
return np.array(input_ids), np.array(length)
# load trained emotion classifier
predictor = BertClassificationPredictor(
model_path=FLAGS.clf_output_dir,
label_path=FLAGS.clf_label_dir, # location for labels.csv file
multi_label=True,
model_type='bert',
do_lower_case=True)
def main(_):
"""
Builds the model and runs
"""
if FLAGS.distributed:
import horovod.tensorflow as hvd
hvd.init()
tf.logging.set_verbosity(tf.logging.INFO)
if len(config_train.name) > 0:
output_dir = os.path.join(FLAGS.output_dir, config_train.name)
else:
output_dir = FLAGS.output_dir
tx.utils.maybe_create_dir(output_dir)
## Loads GPT-2 model configuration
if FLAGS.config_type == "json":
gpt2_config = model_utils.transform_gpt2_to_texar_config(
FLAGS.config_model)
elif FLAGS.config_type == 'texar':
gpt2_config = importlib.import_module(
FLAGS.config_model)
else:
raise ValueError('Unknown config_type.')
# Creates a data pre-processor for, e.g., BPE encoding
proc = processor.get_encoder(FLAGS.pretrained_model_dir)
end_token = proc.encoder['<|endoftext|>']
max_decoding_length = config_train.max_decoding_length
assert max_decoding_length <= gpt2_config.position_size, (
"max_decoding_length should not be greater than position_size. "
"{}>{}".format(max_decoding_length, gpt2_config.position_size))
## Loads data
# Configures training data shard in distribued mode
if FLAGS.distributed:
config_train.train_hparam["dataset"]["num_shards"] = hvd.size()
config_train.train_hparam["dataset"]["shard_id"] = hvd.rank()
config_train.train_hparam["batch_size"] //= hvd.size()
datasets = {}
#if FLAGS.do_train:
train_dataset = tx.data.TFRecordData(hparams=config_train.train_hparam)
datasets['train'] = train_dataset
#if FLAGS.do_eval:
dev_dataset = tx.data.TFRecordData(hparams=config_train.dev_hparam)
datasets['dev'] = dev_dataset
#if FLAGS.do_test:
test_dataset = tx.data.TFRecordData(hparams=config_train.test_hparam)
datasets['test'] = test_dataset
iterator = tx.data.FeedableDataIterator(datasets)
batch = iterator.get_next()
batch_size = tf.shape(batch['x1x4_ids'])[0]
## Builds the GPT-2 model
vocab_size = gpt2_config.vocab_size
word_embedder = tx.modules.WordEmbedder(
vocab_size=vocab_size,
hparams=gpt2_config.embed)
pos_embedder = tx.modules.PositionEmbedder(
position_size=gpt2_config.position_size,
hparams=gpt2_config.pos_embed)
# Ties output layer with input word embedding
output_layer = tf.transpose(word_embedder.embedding, (1, 0))
decoder = tx.modules.TransformerDecoder(
vocab_size=vocab_size,
output_layer=output_layer,
hparams=gpt2_config.decoder)
def _embedding_fn(ids, times):
return word_embedder(ids) + pos_embedder(times)
# For training
def _get_recon_loss(ids, full_len, prefix_len=None, mask_prefix=True, do_print=False):
ids = ids[:,:tf.reduce_max(full_len)]
batch_size__ = tf.shape(ids)[0]
seq_len = tf.fill([batch_size__], tf.shape(ids)[1])
pos_embeds = pos_embedder(sequence_length=seq_len)
input_embeds = word_embedder(ids) + pos_embeds
# greedy output
outputs = decoder(inputs=input_embeds, decoding_strategy='train_greedy')
max_full_len = tf.reduce_max(full_len)
ids = ids[:, :max_full_len]
logits = outputs.logits[:, :max_full_len]
if mask_prefix:
loss_recon = tx.losses.sequence_sparse_softmax_cross_entropy(
labels=ids[:, 1:],
logits=logits[:, :-1, :],
sequence_length=full_len-1,
average_across_timesteps=False,
sum_over_timesteps=False,
average_across_batch=False,
sum_over_batch=False)
mask_recon = tf.sequence_mask(
full_len-1,
dtype=tf.float32)
mask_recon_prefix = 1 - tf.sequence_mask(
prefix_len-1,
maxlen=max_full_len-1,#max_decoding_length-1,
dtype=tf.float32)
mask_recon = mask_recon * mask_recon_prefix
if do_print:
print_op_1 = tf.print(mask_recon)
loss_recon_flat = tx.utils.reduce_with_weights(
tensor=loss_recon,
weights=mask_recon,
average_across_remaining=False,
sum_over_remaining=False,
average_across_batch=False)
print_op_2 = tf.print(loss_recon_flat)
with tf.control_dependencies([print_op_1, print_op_2]):
loss_recon = tx.utils.reduce_with_weights(
tensor=loss_recon,
weights=mask_recon,
average_across_remaining=True,
sum_over_remaining=False)
return loss_recon, mask_recon, loss_recon_flat
else:
loss_recon = tx.utils.reduce_with_weights(
tensor=loss_recon,
weights=mask_recon,
average_across_remaining=True,
sum_over_remaining=False)
else:
loss_recon = tx.losses.sequence_sparse_softmax_cross_entropy(
labels=ids[:, 1:],
logits=logits[:, :-1, :],
sequence_length=full_len-1,
average_across_timesteps=True,
sum_over_timesteps=False,
average_across_batch=False,
sum_over_batch=False)
return loss_recon
# For RL fine-tuning
def _get_sample_story(context_ids, context_len):
sample_output, sample_len = decoder(
decoding_strategy='infer_sample',
embedding = _embedding_fn,
context=context_ids,
context_sequence_length=context_len,
max_decoding_length=max_decoding_length,
end_token=end_token,
softmax_temperature=FLAGS.temperature,
mode=tf.estimator.ModeKeys.PREDICT)
return sample_output, sample_len
# return ids, batch_loss, ids_len
def _get_sample_rolled(output, length, context_len):
ids = output.sample_id
ids = tx.utils.varlength_roll(ids, -context_len) # final sample ids rolled
ids_len = length - context_len
ids = ids[:, :tf.reduce_max(ids_len)]
return ids, ids_len
def compute_batch_loss(output, sample_len, context_len):
max_full_len = tf.reduce_max(sample_len)
ids = output.sample_id[:, :max_full_len]
logits = output.logits[:, :max_full_len] #(bs, sl, vocab)
sampleLogprobs = tx.losses.sequence_sparse_softmax_cross_entropy(
labels=ids[:,1:],
logits=logits,
sequence_length=sample_len - 1,
average_across_timesteps=False,
sum_over_timesteps=False,
average_across_batch=False,
sum_over_batch=False)
mask = tf.sequence_mask(
sample_len-1,
dtype=tf.float32)
mask_prefix = 1 - tf.sequence_mask(
context_len-1,
maxlen=max_full_len-1, #max_decoding_length-1,
dtype=tf.float32)
mask = mask * mask_prefix
batch_loss = tx.utils.reduce_with_weights(
tensor=sampleLogprobs,
weights=mask,
average_across_batch=False,
average_across_remaining=True,
sum_over_remaining=False)
return batch_loss
def _get_greedy_story(context_ids, context_len):
greedy_res, greedy_len = decoder(
decoding_strategy='infer_greedy',
embedding=_embedding_fn,
context=context_ids,
context_sequence_length=context_len,
max_decoding_length=max_decoding_length,
end_token=end_token,
mode=tf.estimator.ModeKeys.PREDICT)
greedy_ids = tx.utils.varlength_roll(greedy_res.sample_id, -context_len)
greedy_ids_len = greedy_len - context_len
greedy_ids = greedy_ids[:, :tf.reduce_max(greedy_ids_len)]
return greedy_ids, greedy_ids_len
## ROC Loss-1: ML loss
x1_len = tf.placeholder(tf.int32, shape=[None], name='x1_len')
x1x4_ids = tf.placeholder(tf.int32, shape=[None, None], name='x1x4_ids')
x1x4_len = tf.placeholder(tf.int32, shape=[None], name='x1x4_len')
loss_fine = _get_recon_loss(x1x4_ids, x1x4_len, x1_len)
x1_ids = tf.placeholder(tf.int32, shape=[None, None], name='x1_ids')
reward = tf.placeholder(tf.float32, shape=[None], name="reward")
sampled_story = tf.placeholder(tf.int32, shape=[None, None], name="sampled_story") #smilar to sample_que
sampled_story_len = tf.placeholder(tf.int32, shape=[None], name='sample_story_len')
## Loss-2: RL loss
symbols_output, symbols_len = _get_sample_story(x1_ids, x1_len)
symbols_rl, len_rl = _get_sample_rolled(symbols_output, symbols_len, x1_len)
symbols_gr, len_gr = _get_greedy_story(x1_ids, x1_len)
batch_loss_rl = _get_recon_loss(sampled_story, sampled_story_len, mask_prefix=False)
rl_loss_fine = tf.reduce_mean(batch_loss_rl * reward)
def _get_beam_ids(context_ids, context_len, target):
# beam-search
predictions = decoder(
beam_width=5,
length_penalty=config_train.length_penalty,
embedding=_embedding_fn,
context=context_ids,
context_sequence_length=context_len,
max_decoding_length=max_decoding_length,
end_token=end_token,
mode=tf.estimator.ModeKeys.PREDICT)
beam_output_ids = tx.utils.varlength_roll(predictions["sample_id"][:,:,0], -context_len)
target_ids = tx.utils.varlength_roll(target, -context_len)
return beam_output_ids, target_ids
target_ids = tx.utils.varlength_roll(x1x4_ids, -x1_len)
tau = tf.placeholder(tf.float32, shape=[], name='tau')
if not FLAGS.sc_rl:
loss = config_train.w_fine * loss_fine
loss_dict = {
'loss': loss,
'loss_fine': config_train.w_fine * loss_fine,
}
else:
loss = (1 - config_train.w_rl) * config_train.w_fine * loss_fine + config_train.w_rl * (config_train.w_fine_rl * rl_loss_fine) #
loss_dict = {
'loss': loss,
'loss_fine': (1 - config_train.w_rl) * config_train.w_fine * loss_fine,
'rl_loss_fine': config_train.w_rl * config_train.w_fine_rl * rl_loss_fine,
}
## Inference
def _infer(context_name):
helper = tx.modules.TopKSampleEmbeddingHelper(
embedding=_embedding_fn,
start_tokens=batch['%s_ids' % context_name][:, 0],
end_token=end_token,
top_k=FLAGS.top_k,
softmax_temperature=FLAGS.temperature)
outputs_infer, len_infer = decoder(
context=batch['%s_ids' % context_name],
context_sequence_length=batch['%s_len' % context_name],
max_decoding_length=max_decoding_length,
helper=helper) # outputs_infer contains sample_id and logits
yy_ids = tx.utils.varlength_roll(
outputs_infer.sample_id, -batch['%s_len' % context_name]) # shift beginning indices (context) to end
yy_len = len_infer - batch['%s_len' % context_name]
yy_ids = yy_ids[:, :tf.reduce_max(yy_len)]
return yy_ids, yy_len
x4_ids_fine, x4_len_fine = _infer('x1')
def _infer_beam_ids(context_name):
# beam-search
predictions = decoder(
beam_width=5,
length_penalty=config_train.length_penalty,
embedding=_embedding_fn,
context=batch['%s_ids' % context_name],
context_sequence_length=batch['%s_len' % context_name],
max_decoding_length=max_decoding_length,
end_token=end_token,
mode=tf.estimator.ModeKeys.PREDICT)
beam_output_ids = tx.utils.varlength_roll(predictions["sample_id"][:, :, 0], -batch['%s_len' % context_name])
return beam_output_ids
beam_search_ids = _infer_beam_ids('x1')
## Optimization
trainable_variables = tx.utils.collect_trainable_variables(
[word_embedder, pos_embedder, decoder])
global_step = tf.Variable(0, trainable=False)
opt = tx.core.get_optimizer(
global_step=global_step,
hparams=config_train.opt)
if FLAGS.distributed:
opt = hvd.DistributedOptimizer(opt)
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=global_step,
learning_rate=None,
optimizer=opt,
variables=trainable_variables)
## Train/eval/test routine
saver = tf.train.Saver()
saver_best = tf.train.Saver(max_to_keep=1)
dev_best = {
'loss': 1e8, 'loss_fine': 1e8, 'rl_loss_fine': 1e8, 'best_reward': -1e8, 'bleu':0., 'meteor': 0.} #'best_reward': -1e8
def _log_losses(losses, step=None):
loss_str = 'loss: %.4f, loss_fine: %.4f, rl_loss_fine: %.4f' % \
(losses['loss'], losses['loss_fine'], losses['rl_loss_fine']
)
if step is not None:
loss_str = 'step: %d, %s' % (step, loss_str)
_log(loss_str)
def _is_head():
if not FLAGS.distributed:
return True
else:
return hvd.rank() == 0
def _train_epoch(sess, initial=False):
"""Trains on the training set, and evaluates on the dev set
periodically.
"""
# load train arc label data
train_arc_file = [i.strip().split() for i in open(os.path.join(config_train.arc_data, "train_mapped.txt"))]
iterator.restart_dataset(sess, 'train')
while True:
try:
# (1) Get data and yy sample
fetches_data = {
'batch': batch,
'batch_size': batch_size,
}
feed_dict_data = {
iterator.handle: iterator.get_handle(sess, 'train'),
tx.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
rets_data = sess.run(fetches_data, feed_dict_data)
reward_fetches = {
'sample_rl': symbols_rl,
'sample_len': len_rl,
'greedy_sym': symbols_gr,
'greedy_len': len_gr,
}
reward_rets = sess.run(reward_fetches, feed_dict={
x1_ids: rets_data['batch']['x1_ids'], x1_len: rets_data['batch']['x1_len'],
tx.global_mode(): tf.estimator.ModeKeys.PREDICT
})
# prepare sample stories for classification
ids_rl, text_rl = _get_text(proc, reward_rets['sample_rl'], reward_rets['sample_len']) #list of list
story_rl = format_generated_stories_for_clf(text_rl, FLAGS.rl_method)
#print("Rl Story: ", story_rl)
_, text_base = _get_text(proc, reward_rets['greedy_sym'], reward_rets['greedy_len'])
story_base = format_generated_stories_for_clf(text_base, FLAGS.rl_method)
#print("Greedy Story", story_base)
# add reward calculation here
reward_rl = get_reward(predictor, story_rl, rets_data['batch']['unique_id'], train_arc_file , method=FLAGS.rl_method)
reward_base = get_reward(predictor, story_base, rets_data['batch']['unique_id'], train_arc_file, method=FLAGS.rl_method)
# self-critical reward
reward_sc = [rr - rb for rr, rb in zip(reward_rl, reward_base)] # class list
# print(reward_rl, reward_base, reward_sc)
ids_rl = utils.list_strip_eos(ids_rl, end_token)
new_in_sample_ids, new_in_sample_len = _fix(ids_rl, end_token)
# (2) Optimize loss
feed_dict = {
x1_ids: rets_data['batch']['x1_ids'],
x1_len: rets_data['batch']['x1_len'],
x1x4_ids: rets_data['batch']['x1x4_ids'],
x1x4_len: rets_data['batch']['x1x4_len'],
sampled_story: new_in_sample_ids,
sampled_story_len: new_in_sample_len,
tau: config_train.tau,
tx.global_mode(): tf.estimator.ModeKeys.TRAIN,
reward: np.array(reward_sc)
}
fetches = {
'train_op': train_op,
'step': global_step,
}
fetches.update(loss_dict)
rets = sess.run(fetches, feed_dict, options=run_opts)
step = rets['step']
dis_steps = config_train.display_steps
if _is_head() and dis_steps > 0 and step % dis_steps == 0:
_log_losses(rets, step)
eval_steps = config_train.eval_steps
if _is_head() and eval_steps > 0 and step % eval_steps == 0:
_dev_epoch(sess, evaluate_func=evaluate_full)
# not used
sample_steps = config_train.sample_steps
if _is_head() and sample_steps > 0 and step % sample_steps == 0:
print('-----------testing-----------------')
_test_epoch(sess, step=step)
# not used
ckpt_steps = config_train.checkpoint_steps
if _is_head() and ckpt_steps > 0 and step % ckpt_steps == 0:
ckpt_fn = os.path.join(output_dir, 'model.ckpt')
ckpt_fn = saver.save(sess, ckpt_fn, global_step=step)
_log('Checkpoint to {}'.format(ckpt_fn))
except tf.errors.OutOfRangeError:
break
def _dev_epoch(sess, evaluate_func=evaluate_full):
"""Evaluates on the dev set.
"""
dev_arc_file = [i.strip().split() for i in open(os.path.join(config_train.arc_data, "dev_mapped.txt"))]
with open(os.path.join(config_train.tfrecord_data_dir, "x4_emo_features.dev"), 'rb') as fp:
emotion_feats = np.array(pickle.load(fp))
iterator.restart_dataset(sess, 'dev')
nsamples = 0
hypotheses=[]
references = []
reward_score = []
losses = []
hypotheses_dict = {}
while True:
try:
# (1) Get data and yy sample
fetches_data = {
'batch': batch,
'batch_size': batch_size,
}
feed_dict_data = {
iterator.handle: iterator.get_handle(sess, 'dev'),
tx.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
rets_data = sess.run(fetches_data, feed_dict_data)
# (2) eval loss
feed_dict = {
x1_ids: rets_data['batch']['x1_ids'],
x1_len: rets_data['batch']['x1_len'],
x1x4_ids: rets_data['batch']['x1x4_ids'],
x1x4_len: rets_data['batch']['x1x4_len'],
# x4_emo: rets_data['batch']['x4_emo'],
tau: config_train.tau,
tx.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
# rets_loss = sess.run(fetches, feed_dict)
fetches = {
'loss_fine': loss_dict['loss_fine'],
#'beam_search_ids': beam_search_ids,
'greedy_sym': symbols_gr,
'greedy_len': len_gr,
'target_ids': target_ids
}
rets = sess.run(fetches, feed_dict)
losses.append(rets['loss_fine'])
_, beam_text = _get_text(proc, rets['greedy_sym'], rets['greedy_len'])
beam_story = format_generated_stories_for_clf(beam_text, FLAGS.rl_method)
_, target_text = _get_text(proc, rets['target_ids'], rets_data['batch']['x1x4_len'])
hypotheses.extend(beam_text)
references.extend(target_text)
hypotheses_dict_ = generate_all_valid_sample_dict(predictor, rets_data['batch']['unique_id'], beam_story, method=FLAGS.rl_method)
for key, react in hypotheses_dict_.items():
if key not in hypotheses_dict:
hypotheses_dict[key] = react # dictionary key=unique_id value =list of list
nsamples += rets_data['batch_size']
except tf.errors.OutOfRangeError:
break
avg_loss = np.mean(losses)
metrics = evaluate_func(references, hypotheses, hypotheses_dict, dev_arc_file, emotion_feats, method=FLAGS.rl_method)
msg = 'loss_fine: %.4f, bleu: %.4f, meteor: %.4f, reward: %.4f' % \
(avg_loss, metrics['bleu'], metrics['meteor'], metrics["best_reward"]
)
_log('nsamples validation: %d' % nsamples)
_log(msg)
if FLAGS.best_model == "emotion":
if FLAGS.do_train and metrics["best_reward"] > dev_best['best_reward']:
# dev_best.update(results.avg())
dev_best['loss_fine'] = avg_loss
dev_best['best_reward'] = metrics["best_reward"]
dev_best.update(metrics)
ckpt_fn = os.path.join(output_dir, 'model_best.ckpt')
ckpt_fn = saver_best.save(sess, ckpt_fn)
_log('Checkpoint best to {}'.format(ckpt_fn))
elif FLAGS.best_model == "bleu":
if FLAGS.do_train and metrics["bleu"] > dev_best['bleu']:
# dev_best.update(results.avg())
dev_best['loss_fine'] = avg_loss
dev_best['best_reward'] = metrics["best_reward"]
dev_best.update(metrics)
ckpt_fn = os.path.join(output_dir, 'model_best.ckpt')
ckpt_fn = saver_best.save(sess, ckpt_fn)
_log('Checkpoint best to {}'.format(ckpt_fn))
elif FLAGS.do_train and avg_loss < dev_best['loss']:
# dev_best.update(results.avg())
dev_best['loss_fine'] = avg_loss
dev_best.update(metrics)
dev_best['best_reward'] = metrics["best_reward"]
ckpt_fn = os.path.join(output_dir, 'model_best.ckpt')
ckpt_fn = saver_best.save(sess, ckpt_fn)
_log('Checkpoint best to {}'.format(ckpt_fn))
def _test_epoch(sess, step=None):
"""Generates samples on the test set.
"""
iterator.restart_dataset(sess, 'test')
_all_inputs = []
_all_samples = []
if FLAGS.finetune:
_log('Generation input: x1')
fetches = {
'inputs': batch['x1_ids'],
'length': batch['x1_len'],
'samples_length': x4_len_fine,
'samples': x4_ids_fine
}
res_fn_appendix = "x1"
while True:
try:
feed_dict = {
iterator.handle: iterator.get_handle(sess, 'test'),
tx.context.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
rets = sess.run(fetches, feed_dict=feed_dict)
_inputs = []
for i, l in zip(rets['inputs'], rets['length']):
# Delete padding
_inputs.append(i[:l].tolist())
_all_inputs.extend(_inputs)
_samples = []
for s, l in zip(rets['samples'], rets['samples_length']):
_samples.append(s[:l].tolist()) # rets['samples'] are np array [bs, max_seq_len=200]
_all_samples.extend(_samples)
except tf.errors.OutOfRangeError:
break
# Parse samples and write to file
eos_token_id = proc.encoder['<|endoftext|>']
_all_input_text = []
for i in _all_inputs:
if i[0] == eos_token_id:
i = i[1:]
i_text = proc.decode(i)
_all_input_text.append(i_text)
_all_input_text = tx.utils.strip_eos(_all_input_text,
eos_token='<|endoftext|>')
_all_samples_text = []
for i, s in zip(_all_inputs, _all_samples):
s_text = proc.decode(s)
s_text = s_text.strip(" |").replace('\n', ' ')
_all_samples_text.append(s_text)
_all_samples_text = tx.utils.strip_eos(_all_samples_text,
eos_token='<|endoftext|>')
if step is None:
fn = "test_samples_%s.tsv" % res_fn_appendix
else:
fn = "test_samples_%s_%d.tsv" % (res_fn_appendix, step)
output_file = os.path.join(output_dir, fn)
_log('Write samples to {}'.format(output_file))
tx.utils.write_paired_text(
_all_input_text, _all_samples_text, output_file)
# Broadcasts global variables from rank-0 process
if FLAGS.distributed:
bcast = hvd.broadcast_global_variables(0)
session_config = tf.ConfigProto()
if FLAGS.distributed:
session_config.gpu_options.visible_device_list = str(hvd.local_rank())
session_config.gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=session_config) as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
#smry_writer = tf.summary.FileWriter(FLAGS.output_dir, graph=sess.graph)
if FLAGS.distributed:
bcast.run()
#Restores trained model if specified
if FLAGS.checkpoint:
_log('Restore from {}'.format(FLAGS.checkpoint))
saver.restore(sess, FLAGS.checkpoint)
elif FLAGS.pretrain_checkpoint:
_log('Restore from {}'.format(FLAGS.pretrain_checkpoint))
model_utils.init_gpt2_checkpoint(sess, FLAGS.pretrain_checkpoint)
print("\nFinished loading\n")
saver.save(sess, output_dir + '/gpt2_model.ckpt')
iterator.initialize_dataset(sess)
if FLAGS.do_train:
for epoch in range(config_train.max_train_epoch):
print("Training epoch {}".format(epoch))
_train_epoch(sess, epoch==0)
saver.save(sess, output_dir + '/model.ckpt')
if FLAGS.do_eval:
_dev_epoch(sess)
if FLAGS.do_test:
_test_epoch(sess)
if __name__ == "__main__":
tf.app.run()