Please download the (selected) datasets from the official websites and place or sim-link them under $LAVILA_ROOT/datasets/
.
$LAVILA_ROOT/datasets/
CharadesEgo/
EGTEA/
EK100/
Ego4D/
-
Download Ego4D videos (license is required).
-
Preprocess
We cut each video into 5-minute-long chunks and resize the smaller size to be 288 pixels for faster IO. Please refer to this script for more details.
-
Download annotations
a. Download egomcq.json to
$LAVILA_ROOT/datasets/Ego4D
(if you want to evaluate EgoMCQ).b. Download metadata for train split and val split to
$LAVILA_ROOT/datasets/Ego4D
((if you want to train LAVILA from scratch).
The fold should look like this:
$LAVILA_ROOT/datasets/
Ego4D/
ego4d_train.pkl
ego4d_val.pkl
egomcq.json
video_288px/
000786a7-3f9d-4fe6-bfb3-045b368f7d44.mp4/
0.mp4
300.mp4
000a3525-6c98-4650-aaab-be7d2c7b9402.mp4/
0.mp4
...
- Download annotations
# Assume that you are under `datasets/EK100/`
git clone https://github.com/epic-kitchens/epic-kitchens-100-annotations
-
Download videos.
a. For raw videos, please download them from https://epic-kitchens.github.io/.
b. (Recommended) The raw videos are huge (~1 TB). As an alternative, please check out a resized version.
-
(For EK-100 MIR)
a. Generate the relevancy matrix of train/val splits using the official code.
b. (Recommended) The generated result has some randomness. Therefore, we also provide the replica of train split and val split. Please put them to the folder
$LAVILA_ROOT/datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/
.
The folder should look like this:
$LAVILA_ROOT/datasets/
EK100/
epic-kitchens-100-annotations/
EPIC_100_train.csv
EPIC_100_validation.csv
...
retrieval_annotations/relevancy/ # this appears if you do 3.
caption_relevancy_EPIC_100_retrieval_train.pkl
caption_relevancy_EPIC_100_retrieval_test.pkl
video_ht256px/
P01/
P01_01.MP4
P01_02.MP4
...
P01_19.MP4
P02/
P02_01.MP4
P02_02.MP4
...
P02_15.MP4
...
- Download annotations at https://prior.allenai.org/projects/charades-ego.
### Annotations
# Assume that you are under `datasets/CharadesEgo/`
wget https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/CharadesEgo.zip
unzip CharadesEgo.zip && rm CharadesEgo.zip
- Download data (~11GB) at https://prior.allenai.org/projects/charades-ego.
### Data
wget https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/CharadesEgo_v1_480.tar
tar -xvf CharadesEgo_v1_480.tar # Or specify an external path using `-C` and sim-link it to here
rm CharadesEgo_v1_480.tar
- (For fine-tuning CharadesEgo) Download two additional metadata files: clip-level metadata (train) and clip-level metadata (val). Put them to the folder
$LAVILA_ROOT/datasets/CharadesEgo/CharadesEgo/
.
The folder should look like this:
$LAVILA_ROOT/datasets/
CharadesEgo/
CharadesEgo/
CharadesEgo_v1_train_only1st.csv
CharadesEgo_v1_test_only1st.csv
...
metadata_filtered_train.pkl # this appears if you do 3.
metadata_filtered_val.pkl # this appears if you do 3.
CharadesEgo_v1_480/
005BU.mp4
005BUEGO.mp4
...
-
Download
TRIMMED_ACTION_CLIPS
(~20GB) andACTION_ANNOTATIONS
and untar to the current folder$LAVILA_ROOT/datasets/EGTEA
.
unzip action_annotation.zip -d EGTEA/ && rm action_annotation.zip
The folder should look like this:
$LAVILA_ROOT/datasets/
EGTEA/
train_split1.txt
test_split1.txt
cropped_clips/
OP01-R01-PastaSalad/
OP01-R01-PastaSalad-1002316-1004005-F024051-F024101.mp4
OP01-R01-PastaSalad-1004110-1021110-F024057-F024548.mp4
OP01-R01-PastaSalad-1022590-1024050-F024539-F024581.mp4
...
OP01-R02-TurkeySandwich/
OP01-R02-TurkeySandwich-102320-105110-F002449-F002529.mp4
OP01-R02-TurkeySandwich-105440-106460-F002528-F002558.mp4
OP01-R02-TurkeySandwich-107332-133184-F002513-F003259.mp4
...
...