-
Notifications
You must be signed in to change notification settings - Fork 46
/
main_finetune_retrieval.py
651 lines (575 loc) · 28.9 KB
/
main_finetune_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from collections import OrderedDict
import json
import math
import numpy as np
import os
import pandas as pd
import sys
import time
import torch
import torch.backends.cudnn as cudnn
import torch.cuda.amp as amp
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.nn.parallel
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
import wandb
from lavila.data import datasets
from lavila.data.video_transforms import Permute
from lavila.models import models, loss
from lavila.models.tokenizer import (MyBertTokenizer, MyDistilBertTokenizer, MyGPT2Tokenizer, SimpleTokenizer)
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation_charades import charades_map
from lavila.utils.meter import AverageMeter, ProgressMeter
from lavila.utils.preprocess import generate_label_map
from lavila.utils.random import random_seed
from lavila.utils.scheduler import cosine_scheduler
from lavila.utils.evaluation_ek100mir import (calculate_k_counts, calculate_IDCG, calculate_mAP, calculate_nDCG)
def get_args_parser():
parser = argparse.ArgumentParser(description='lavila finetune and evaluation', add_help=False)
# Data
parser.add_argument('--dataset', default='ek100_mir', type=str,
choices=['ek100_mir', 'charades_ego'])
parser.add_argument('--root',
default='datasets/EK100/video_ht256px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_train.csv',
type=str, help='path to metadata file (train set)')
parser.add_argument('--metadata-val',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv',
type=str, help='path to metadata file (val set)')
parser.add_argument('--relevancy-path',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl',
type=str, help='path to relevancy matrix (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--clip-length', default=16, type=int, help='clip length')
parser.add_argument('--clip-stride', default=4, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
# Model
parser.add_argument('--pretrain-model', default='', type=str, help='path to pretrain model')
parser.add_argument('--resume', default='', type=str, help='path to resume from')
parser.add_argument('--find-unused-parameters', action='store_true',
help='do this during DDP (useful for models with tied weights)')
parser.add_argument('--drop-path-rate', default=0.1, type=float, help='drop path ratio')
# Training
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--warmup-epochs', default=1, type=int)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('--batch-size', default=16, type=int,
help='number of samples per-device/per-gpu')
parser.add_argument('--freeze-temperature', action='store_true', help='freeze temperature if set to True')
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('--fix-lr', action='store_true', help='disable cosine lr decay if set True')
parser.add_argument('--lr-start', default=1e-6, type=float,
help='initial warmup lr')
parser.add_argument('--lr-end', default=1e-5, type=float,
help='minimum final lr')
parser.add_argument('--clip-grad-type', default='norm', choices=['norm', 'value'])
parser.add_argument('--clip-grad-value', default=None, type=float, help='')
parser.add_argument('--update-freq', default=1, type=int,
help='optimizer update frequency (i.e. gradient accumulation steps)')
parser.add_argument('--wd', default=0.01, type=float)
parser.add_argument('--betas', default=(0.9, 0.999), nargs=2, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--eval-freq', default=5, type=int)
parser.add_argument('--save-freq', default=5, type=int)
parser.add_argument('--disable-amp', action='store_true',
help='disable mixed-precision training (requires more memory and compute)')
parser.add_argument('--use-zero', action='store_true',
help='use ZeroRedundancyOptimizer to save memory')
parser.add_argument('--use-checkpoint', action='store_true',
help='use gradient checkpointing during training for significantly less GPU usage')
# System
parser.add_argument('--print-freq', default=100, type=int, help='print frequency')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--evaluate', action='store_true', help='eval only')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--wandb', action='store_true', help='Enable WandB logging')
return parser
def main(args):
dist_utils.init_distributed_mode(args)
global best_acc1
random_seed(args.seed, dist_utils.get_rank())
if args.pretrain_model:
ckpt_path = args.pretrain_model
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print("=> creating model: {}".format(old_args.model))
model = getattr(models, old_args.model)(
pretrained=old_args.load_visual_pretrained,
pretrained2d=old_args.load_visual_pretrained is not None,
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
timesformer_gated_xattn=False,
timesformer_freeze_space=False,
num_frames=args.clip_length,
drop_path_rate=args.drop_path_rate,
)
model.logit_scale.requires_grad = False
model.cuda(args.gpu)
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {})".format(ckpt_path, ckpt['epoch']))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], bucket_cap_mb=200,
find_unused_parameters=args.find_unused_parameters
)
p_wd, p_non_wd = [], []
for n, p in model.named_parameters():
if not p.requires_grad:
continue # frozen weights
if p.ndim < 2 or 'bias' in n or 'ln' in n or 'bn' in n:
p_non_wd.append(p)
else:
p_wd.append(p)
optim_params = [{"params": p_wd, "weight_decay": args.wd},
{"params": p_non_wd, "weight_decay": 0}]
if args.use_zero:
optimizer = ZeroRedundancyOptimizer(
optim_params, optimizer_class=torch.optim.AdamW,
lr=args.lr, betas=args.betas, eps=args.eps, weight_decay=args.wd
)
else:
optimizer = torch.optim.AdamW(optim_params, lr=args.lr, betas=args.betas,
eps=args.eps, weight_decay=args.wd)
scaler = amp.GradScaler(enabled=not args.disable_amp)
# optionally resume from a checkpoint (takes precedence over autoresume)
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
args.resume = ''
if args.resume:
if os.path.isfile(args.resume):
print("=> loading resume checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0
args.start_epoch = epoch
if not args.distributed:
state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict[k.replace('module.', '')] = v
result = model.load_state_dict(state_dict, strict=False)
else:
result = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(result)
optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else ()
scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else ()
best_acc1 = checkpoint['best_acc1']
print("=> loaded resume checkpoint '{}' (epoch {})"
.format(args.resume, epoch))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
# auto-resume from latest checkpoint in output directory
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
print("=> loading latest checkpoint '{}'".format(latest))
latest_checkpoint = torch.load(latest, map_location='cpu')
args.start_epoch = latest_checkpoint['epoch']
model.load_state_dict(latest_checkpoint['state_dict'])
optimizer.load_state_dict(latest_checkpoint['optimizer'])
scaler.load_state_dict(latest_checkpoint['scaler'])
best_acc1 = latest_checkpoint['best_acc1']
print("=> loaded latest checkpoint '{}' (epoch {})"
.format(latest, latest_checkpoint['epoch']))
cudnn.benchmark = True
# Data loading code
print("=> creating dataset")
if old_args.model.endswith('DISTILBERT_BASE'):
tokenizer = MyDistilBertTokenizer('distilbert-base-uncased')
elif old_args.model.endswith('BERT_BASE'):
tokenizer = MyBertTokenizer('bert-base-uncased')
elif old_args.model.endswith('BERT_LARGE'):
tokenizer = MyBertTokenizer('bert-large-uncased')
elif old_args.model.endswith('GPT2'):
tokenizer = MyGPT2Tokenizer('gpt2')
elif old_args.model.endswith('GPT2_MEDIUM'):
tokenizer = MyGPT2Tokenizer('gpt2-medium')
elif old_args.model.endswith('GPT2_LARGE'):
tokenizer = MyGPT2Tokenizer('gpt2-large')
elif old_args.model.endswith('GPT2_XL'):
tokenizer = MyGPT2Tokenizer('gpt2-xl')
else:
print("Using SimpleTokenizer because of model '{}'. "
"Please check if this is what you want".format(old_args.model))
tokenizer = SimpleTokenizer()
if args.dataset == 'ek100_mir':
criterion = loss.MaxMarginRankingLoss(margin=0.2, fix_norm=True).cuda(args.gpu)
elif args.dataset == 'charades_ego':
criterion = loss.CLIPLoss(
use_vissl=True,
cache_labels=True,
rank=args.rank,
world_size=args.world_size
)
crop_size = 224 if '336PX' not in old_args.model else 336
transforms_list = [
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.RandomResizedCrop(crop_size, scale=(0.5, 1.0)),
]
if 'OPENAI' in old_args.model:
transforms_list.append(transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]))
else:
transforms_list.append(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_transform = transforms.Compose(transforms_list)
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if 'OPENAI' not in old_args.model else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
# build dataset
args.model = old_args.model
args.norm_embed = old_args.norm_embed
if args.dataset == 'ek100_mir':
train_dataset = datasets.get_dataset(train_transform, tokenizer, args, is_training=True)
args.metadata = args.metadata.replace('train', 'test')
val_dataset = datasets.get_dataset(val_transform, tokenizer, args, is_training=False)
args.metadata = args.metadata.replace('test', 'train')
elif args.dataset == 'charades_ego':
train_dataset = datasets.VideoCaptionDatasetCLIP(
'charades_ego_trimmed', args.root, args.metadata,
transform=train_transform, is_training=True, tokenizer=tokenizer,
clip_length=args.clip_length, clip_stride=args.clip_stride
)
labels, mapping_vn2act = generate_label_map(args.dataset)
val_dataset = datasets.VideoClassyDataset(
args.dataset, args.root, args.metadata_val,
transform=val_transform, is_training=False,
label_mapping=mapping_vn2act, is_trimmed=False,
num_clips=1, clip_length=args.clip_length, clip_stride=args.clip_stride,
sparse_sample=args.sparse_sample,
)
else:
raise NotImplementedError
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.SequentialSampler(val_dataset) # disable distributed
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True
)
print('len(train_loader) = {}'.format(len(train_loader)))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(val_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False
)
print('len(val_loader) = {}'.format(len(val_loader)))
if args.evaluate:
if args.dataset == 'ek100_mir':
_ = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
_ = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
return
if args.fix_lr:
lr_schedule = None
else:
lr_schedule = cosine_scheduler(
args.lr, args.lr_end, args.epochs, len(train_loader) // args.update_freq,
warmup_epochs=args.warmup_epochs, start_warmup_value=args.lr_start,
)
if dist_utils.is_main_process() and args.wandb:
wandb_id = os.path.split(args.output_dir)[-1]
wandb.init(project='LaViLa', id=wandb_id, config=args, resume='allow')
print(args)
print("=> zero-shot testing")
if args.dataset == 'ek100_mir':
_ = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
_ = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
print("=> beginning training")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_stats = train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args)
is_epoch = ((epoch + 1) % args.save_freq) == 0
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'best_acc1': 0,
'args': args,
}, False, args.output_dir, is_epoch=is_epoch)
if (epoch + 1) % args.eval_freq != 0:
continue
# TODO: add evaluation
if args.dataset == 'ek100_mir':
val_stats = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
val_stats = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in val_stats.items()},
'epoch': epoch}
if dist_utils.is_main_process():
if args.wandb:
wandb.log(log_stats)
with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f:
f.write(json.dumps(log_stats) + '\n')
def train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
if args.dataset == 'ek100_mir':
metric_names = ['loss', 'max_margin_loss']
elif args.dataset == 'charades_ego':
metric_names = models.get_metric_names(args.model)
iters_per_epoch = len(train_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for data_iter, inputs in enumerate(train_loader):
optim_iter = data_iter // args.update_freq
# measure data loading time
data_time.update(time.time() - end)
# update weight decay and learning rate according to their schedule
it = iters_per_epoch * epoch + optim_iter # global training iteration
for k, param_group in enumerate(optimizer.param_groups):
if lr_schedule is not None:
param_group['lr'] = lr_schedule[it]
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
relevancies = inputs.pop()
# compute output
with amp.autocast(enabled=not args.disable_amp):
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
if args.dataset == 'ek100_mir':
loss_dict = criterion(outputs, weight=relevancies)
elif args.dataset == 'charades_ego':
loss_dict = criterion(outputs)
loss = loss_dict['loss']
loss /= args.update_freq
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
scaler.scale(loss).backward()
# TODO: for debug only
# for n, p in model.named_parameters():
# if p.grad is not None:
# print('{}: {} | {}'.format(n, torch.mean(torch.abs(p.data)), torch.mean(torch.abs(p.grad))), flush=True)
# else:
# print('{}: {} | {}'.format(n, torch.mean(torch.abs(p.data)), 'None'), flush=True)
# if torch.isnan(loss):
# for n, p in model.named_parameters():
# print(f'{n}:', p.grad, flush=True)
if (data_iter + 1) % args.update_freq != 0:
continue
if args.clip_grad_value is not None:
scaler.unscale_(optimizer)
if args.clip_grad_type == 'norm':
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.clip_grad_value, norm_type=2.
)
elif args.clip_grad_type == 'value':
torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad_value)
else:
assert False, f"Unknown clip mode ({args.clip_grad_type})."
# compute gradient and do SGD step
scaler.step(optimizer)
scaler.update()
model.zero_grad(set_to_none=True)
if hasattr(dist_utils.get_model(model), 'logit_scale'):
# clamp logit scale to [0, 100]
dist_utils.get_model(model).logit_scale.data.clamp_(0, 4.6052)
logit_scale = dist_utils.get_model(model).logit_scale.exp().item()
else:
logit_scale = torch.nan
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if optim_iter % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()},
'scaler': scaler.get_scale(), 'logit': logit_scale})
progress.display(optim_iter)
progress.synchronize()
return {**{k: v.avg for k, v in metrics.items()},
'lr': optimizer.param_groups[0]['lr'],
'logit_scale': logit_scale}
def validate_mir(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
metric_names = ['loss', 'max_margin_loss']
iters_per_epoch = len(val_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Test: "
)
# switch to eval mode
model.eval()
all_video_embed = []
all_text_embed = []
with torch.no_grad():
end = time.time()
for i, inputs in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
relevancies = inputs.pop()
# compute output
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
loss_dict = criterion(outputs, weight=relevancies)
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
image_features = outputs['image_embed']
text_features = outputs['text_embed']
all_video_embed.append(image_features.cpu().numpy())
all_text_embed.append(text_features.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if i % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()}})
progress.display(i)
progress.synchronize()
all_text_embed = np.vstack(all_text_embed)
all_video_embed = np.vstack(all_video_embed)
similarity_matrix = np.matmul(all_video_embed, all_text_embed.T)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv(args.metadata.replace('train', 'test')).values[:, 0]
text_id = pd.read_csv(args.metadata.replace('train', 'test_sentence')).values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
print(similarity_matrix.shape)
rel_matrix = pd.read_pickle(
args.relevancy_path
)
vis_map = calculate_mAP(similarity_matrix, rel_matrix)
txt_map = calculate_mAP(similarity_matrix.T, rel_matrix.T)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, (vis_map + txt_map) / 2))
vis_k_counts = calculate_k_counts(rel_matrix)
txt_k_counts = calculate_k_counts(rel_matrix.T)
vis_IDCG = calculate_IDCG(rel_matrix, vis_k_counts)
txt_IDCG = calculate_IDCG(rel_matrix.T, txt_k_counts)
vis_nDCG = calculate_nDCG(similarity_matrix, rel_matrix, k_counts=vis_k_counts, IDCG=vis_IDCG)
txt_nDCG = calculate_nDCG(similarity_matrix.T, rel_matrix.T, k_counts=txt_k_counts, IDCG=txt_IDCG)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_nDCG, txt_nDCG, (vis_nDCG + txt_nDCG) / 2))
return {**{k: v.avg for k, v in metrics.items()}}
def validate_cls(val_loader, templates, labels, model, tokenizer, args):
# switch to eval mode
model.eval()
all_outputs = []
all_targets = []
with torch.no_grad():
text_features = []
for label in labels:
if isinstance(label, list):
texts = [tmpl.format(lbl) for tmpl in templates for lbl in label]
else:
texts = [tmpl.format(label) for tmpl in templates]
texts = tokenizer(texts)
if isinstance(texts, tuple):
# Bert-style tokenizer will output both ids and mask
texts, masks = texts
texts = texts.cuda(non_blocking=True)
masks = masks.cuda(non_blocking=True)
else:
texts = texts.cuda(non_blocking=True)
masks = None
texts = texts.view(-1, 77).contiguous()
masks = masks.view(-1, 77).contiguous() if masks is not None else None
if masks is not None:
class_embeddings = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
class_embeddings = dist_utils.get_model(model).encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.mean(dim=0)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0)
print('=> start forwarding')
end_time = time.time()
for i, (images, target) in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
if isinstance(images, torch.Tensor):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_image = image_features @ text_features.t()
logits_per_image = torch.softmax(logits_per_image, dim=1)
else:
target = target.cuda(non_blocking=True)
images_list = images
logits_all_clips = []
for images in images_list:
images = images.cuda(non_blocking=True)
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
logits_per_image = image_features @ text_features.t()
logits_all_clips.append(logits_per_image)
logits_all_clips = torch.stack(logits_all_clips, dim=0)
# logits_per_image = logits_all_clips.max(0).values
logits_per_image = logits_all_clips.mean(0)
logits_per_image = torch.softmax(logits_per_image, dim=1)
all_outputs.append(logits_per_image.cpu())
all_targets.append(target.cpu())
all_outputs = torch.cat(all_outputs)
all_targets = torch.cat(all_targets)
preds, targets = all_outputs.numpy(), all_targets.numpy()
m_ap, _, _ = charades_map(preds, targets)
print('mAP = {:.3f}'.format(m_ap))
return {'mAP': m_ap}
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila finetune and evaluation', parents=[get_args_parser()])
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)