This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
139 lines (121 loc) · 5.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import time
import torch
import torch.nn as nn
import numpy as np
import logging
from data import load_data, read_relation_subsets, gen_rel_subset_feature
from model import SIGN, WeightedAggregator
from utils import get_n_params, get_evaluator, train, test
def preprocess_features(g, rel_subsets, args, device):
# pre-process heterogeneous graph g to generate neighbor-averaged features
# for each relation subsets
num_paper, feat_size = g.nodes["paper"].data["feat"].shape
new_feats = [torch.zeros(num_paper, len(rel_subsets), feat_size) for _ in range(args.R + 1)]
print("Start generating features for each sub-metagraph:")
for subset_id, subset in enumerate(rel_subsets):
print(subset)
feats = gen_rel_subset_feature(g, subset, args, device)
for i in range(args.R + 1):
feat = feats[i]
new_feats[i][:feat.shape[0], subset_id, :] = feat
feats = None
return new_feats
def main(args):
if args.seed is not None:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if args.gpu < 0:
device = "cpu"
else:
device = f"cuda:{args.gpu}"
# Load dataset
data = load_data(device, args)
g, labels, num_classes, train_nid, val_nid, test_nid = data
evaluator = get_evaluator(args.dataset)
# Preprocess neighbor-averaged features over sampled relation subgraphs
rel_subsets = read_relation_subsets(args.use_relation_subsets)
with torch.no_grad():
feats = preprocess_features(g, rel_subsets, args, device)
print("Done preprocessing")
labels = labels.to(device)
# Release the graph since we are not going to use it later
g = None
# Set up logging
logging.basicConfig(format='[%(levelname)s] %(message)s',
level=logging.INFO)
logging.info(str(args))
_, num_feats, in_feats = feats[0].shape
logging.info(f"new input size: {num_feats} {in_feats}")
# Create model
num_hops = args.R + 1 # include self feature hop 0
model = nn.Sequential(
WeightedAggregator(num_feats, in_feats, num_hops),
SIGN(in_feats, args.num_hidden, num_classes, num_hops,
args.ff_layer, args.dropout, args.input_dropout)
)
logging.info("# Params: {}".format(get_n_params(model)))
model.to(device)
if len(labels.shape) == 1:
# single label multi-class
loss_fcn = nn.NLLLoss()
else:
# multi-label multi-class
loss_fcn = nn.KLDivLoss(reduction='batchmean')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
# Start training
best_epoch = 0
best_val = 0
for epoch in range(1, args.num_epochs + 1):
start = time.time()
train(model, feats, labels, train_nid, loss_fcn, optimizer, args.batch_size)
if epoch % args.eval_every == 0:
with torch.no_grad():
train_res, val_res, test_res = test(
model, feats, labels, train_nid, val_nid, test_nid, evaluator, args.eval_batch_size)
end = time.time()
val_acc = val_res[0]
log = "Epoch {}, Times(s): {:.4f}".format(epoch, end - start)
if args.dataset.startswith("oag"):
log += ", NDCG: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(train_res[0], val_res[0], test_res[0])
log += ", MRR: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(train_res[1], val_res[1], test_res[1])
else:
log += ", Accuracy: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(train_res[0], val_res[0], test_res[0])
logging.info(log)
if val_acc > best_val:
best_val = val_acc
best_epoch = epoch
logging.info("Best Epoch {}, Val {:.4f}".format(best_epoch, best_val))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Neighbor-Averaging over Relation Subgraphs")
parser.add_argument("--num-epochs", type=int, default=1000)
parser.add_argument("--num-hidden", type=int, default=256)
parser.add_argument("--R", type=int, default=2,
help="number of hops")
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--dataset", type=str, default="oag")
parser.add_argument("--data-dir", type=str, default=None, help="path to dataset, only used for OAG")
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--weight-decay", type=float, default=0)
parser.add_argument("--eval-every", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=50000)
parser.add_argument("--eval-batch-size", type=int, default=250000,
help="evaluation batch size, -1 for full batch")
parser.add_argument("--ff-layer", type=int, default=2,
help="number of feed-forward layers")
parser.add_argument("--input-dropout", action="store_true")
parser.add_argument("--use-emb", required=True, type=str)
parser.add_argument("--use-relation-subsets", type=str, required=True)
parser.add_argument("--seed", type=int, default=None )
parser.add_argument("--cpu-preprocess", action="store_true",
help="Preprocess on CPU")
args = parser.parse_args()
print(args)
main(args)