This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest.lua
135 lines (121 loc) · 6.05 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
--------------------------------------------------------------------------------
-- Testing a multiscale convnet to predict next frame from some previous images
-- and semantic segmentations
-- Written by Camille Couprie, Pauline Luc, Natalia Neverova
--------------------------------------------------------------------------------
-- Copyright 2017-present, Facebook, Inc.
-- All rights reserved.
-- This source code is licensed under the license found in the
-- LICENSE file in the root directory of this source tree.
require 'torch'
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'paths'
local display = require 'display'
local tnt = require 'torchnet'
paths.dofile('utils/metrics.lua')
paths.dofile('utils/dataset.lua')
paths.dofile('utils/utils.lua')
-- set options -----------------------------------------------------------------
local cmd = torch.CmdLine()
cmd:option('--modelID', 'AR_dil_ft', 'AR_dil_ft or AR')
cmd:option('--nRecFrames', 0, 'N of recurrent frames (0 short term, 2 midterm)')
cmd:option('--save', false, 'saving generated predictions')
cmd:option('--saveDir', 'results', 'directory for exporting predictions')
cmd:option('--dataDir', 'Data/', 'directory with the dataset')
cmd:option('--nseq', 0, 'amount of test sequences (0 - all in Data/val/)')
cmd:option('--delaygif', 50, 'speed of the generated animation')
local opttest = cmd:parse(arg)
print('Running with test options:', opttest)
-- load and set model parameters -----------------------------------------------
modelPaths = {}
modelPaths['AR_dil_ft'] = 'trained_models/S2S_dil_AR_ft_cpu.t7'
modelPaths['AR'] = 'trained_models/S2S_AR_cpu.t7'
if modelPaths[opttest.modelID]==nil then
modelPaths[opttest.modelID] = opttest.modelID
end
print('Loading a pretrained model from ' .. modelPaths[opttest.modelID])
assert(paths.filep(modelPaths[opttest.modelID]), "Pretrained model not found")
local loaded = torch.load(modelPaths[opttest.modelID])
opt = loaded.opt
for k,v in pairs(opttest) do opt[k] = opttest[k] end
opt.nTargetFrames = 1
opt.datasetFrameRate = 3
print('Input frames: ' .. opt.nInputFrames)
print('Target frames: ' .. opt.nTargetFrames)
print('Recurrent steps ' .. opt.nRecFrames)
-- load and check the data -----------------------------------------------------
local batchList = getNBatches(opt.dataDir,'val')
if opt.nseq == 0 then opt.nseq = #batchList end
assert(opt.nseq<=#batchList and opt.nseq>0,
"Found "..#batchList.." batches out of "..opt.nseq)
print('Number of test sequences: ' .. opt.nseq)
-- create directories ----------------------------------------------------------
if opt.save and paths.filep(opt.saveDir) or paths.dirp(opt.saveDir) then
if paths.dirp(opt.saveDir .. '.bkp') then
os.execute('sudo rm -R ' .. opt.saveDir .. '.bkp')
end
os.execute('sudo mv ' .. opt.saveDir .. ' ' .. opt.saveDir .. '.bkp')
print('Copied existing '..opt.saveDir..' into '..opt.saveDir..'.bkp')
end
-- load the model --------------------------------------------------------------
paths.dofile('utils/model.lua')
local model = loaded.generator:cuda()
local preprocessInput = getPyrPreprocessor(opt)
-- allocate variables ----------------------------------------------------------
local ob = opt.batchSize
local tf = opt.nTargetFrames
local inpf = opt.nInputFrames
local rf = opt.nRecFrames
local confusion = tnt.SemSegmMeter{classes = classes, skipClass = 20}
local segmInputE = torch.CudaTensor(ob, inpf, nclasses, oh, ow)
local predS = torch.CudaTensor(ob, rf + 1, nclasses * tf, oh, ow):fill(0)
local sinputF, spredF, inputF
for jt = 1,#batchList do -- iterating over batches
xlua.progress(jt, opt.nseq)
local frames, segmE = getBatch(batchList[jt]) -- loading new batch
local inputF = frames[{{},{1,inpf}}]:clone():view(ob, inpf, oc, oh, ow)
local framesTarget = frames[{{},{inpf + 1, inpf + tf + rf}}]:clone()
local sinputF = squeeze_segm_map(segmE[{{},{1,inpf}}]:clone(),nclasses,ob,oh,ow)
local segmTargetE = segmE[{{},{inpf + 1, inpf + tf + rf}}]:clone()
segmTargetE:resize(ob, (tf + rf) * nclasses, oh, ow)
local segmTarget = squeeze_segm_map(segmTargetE, nclasses, ob, oh, ow):cuda()
for k = 1, rf+1 do -- autoregressive inference
if k<inpf then segmInputE[{{}, {1,inpf-k+1}}] = segmE[{{},{k,inpf}}] end
if k>1 then
segmInputE[{{},{math.max(inpf-k+2,1),inpf}}] = predS[{{},{math.max(k-inpf-1,1),k-1}}]
end
local input = preprocessInput:forward(resize_batch(segmInputE):cuda())
if #input<2 then input[2] = input[1] end
local pred = model:forward(input)
if type(pred)=='table' then pred = pred[opt.nscales] end
predS[{{},k}] = pred[{{},{1,nclasses}}]:clone()
end
-- assess quality -----------------------------------------------------------
local targetF = framesTarget:view(ob, tf+rf, oc, oh, ow)
local stargetF = segmTarget:view(ob, tf+rf, 1, oh, ow)
local spredF = squeeze_segm_map(predS:double(),nclasses,ob,oh,ow)
spredF = spredF:view(ob, tf+rf, 1, oh, ow)
for i = 1,ob do confusion:add(spredF[i][tf+rf][1],stargetF[i][tf+rf][1]) end
-- dump predictions ----------------------------------------------------------
if opt.save then
local filename_out = opt.saveDir .. '/' .. jt
os.execute('sudo mkdir -p ' .. filename_out)
os.execute('sudo chmod 777 ' .. filename_out)
display_segm(sinputF, 0, (filename_out..'/spred'), inputF, colormap)
display_segm(spredF, inpf, (filename_out..'/spred'), targetF, colormap, true)
os.execute('sudo convert $(for ((a=1; a<='..(inpf + tf + rf)..
'; a++)); do printf -- "-delay '..opt.delaygif..' '..filename_out..
'/spred_%s.png " $a; done;) '..filename_out..'/results.gif')
end
end
print('========== PERFORMANCE: ALL CLASSES ==========')
print('IoU SEG ' ..' = ' ..confusion:value('map')..' '
..'; per class acc. SEG = '..confusion:value('pc')
..'; per pixel acc. SEG = '..confusion:value('pp'))
print('========== PERFORMANCE: MOVING OBJECTS ==========')
print('IoU SEG ' ..' = ' ..confusion:valueOver('iou', movingObjects)..' '
..'; per class acc. SEG = '..confusion:valueOver('pc', movingObjects)
..'; per pixel acc. SEG = '..confusion:valueOver('pp', movingObjects))