This repository has been archived by the owner on Dec 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 53
/
run_with_submitit.py
164 lines (129 loc) · 5.17 KB
/
run_with_submitit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
"""
A script to run multinode training with submitit.
"""
import argparse
import os
import uuid
from pathlib import Path
import time
import shutil
import itertools
import main as classification
import submitit
def parse_args():
classification_parser = classification.get_args_parser()
parser = argparse.ArgumentParser("Submitit for ConViT", parents=[classification_parser])
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=2, type=int, help="Number of nodes to request")
parser.add_argument("--timeout", default=1000, type=int, help="Duration of the job")
parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
parser.add_argument("--partition", default="dev,learnfair,scavenge", type=str, help="Partition where to submit")
parser.add_argument("--use_volta32", action='store_true', help="Big models? Use this")
parser.add_argument('--comment', default="icml", type=str,
help='Comment to pass to scheduler, e.g. priority message')
return parser.parse_args()
def get_shared_folder() -> Path:
user = os.getenv("USER")
if Path("/checkpoint/").is_dir():
p = Path(f"/checkpoint/{user}/convit")
# p = p / str(int(time.time()))
p = p / str(1614800338)
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file(shared_folder):
# Init file must not exist, but it's parent dir must exist.
init_file = shared_folder / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import main as classification
self._setup_gpu_args()
classification.main(self.args)
def checkpoint(self):
import os
import submitit
self.args.dist_url = get_init_file(self.args.shared_dir).as_uri()
checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
if os.path.exists(checkpoint_file):
self.args.resume = checkpoint_file
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
from pathlib import Path
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def copy_py(dst_folder, root='.'):
if not os.path.exists(dst_folder):
print("Folder doesn't exist!")
return
for f in os.listdir(root):
if f.endswith('.py'):
shutil.copy2(f, dst_folder)
def main():
args = parse_args()
shared_folder = get_shared_folder()
copy_py(shared_folder)
os.chdir(shared_folder)
grid = {
'model': ['convit_base'],
}
def dict_product(d):
keys = d.keys()
for element in itertools.product(*d.values()):
yield dict(zip(keys, element))
for params in dict_product(grid):
name = '_'.join(['{}_{}'.format(k,v) for k,v in params.items()])
args.shared_dir = shared_folder
args.job_dir = shared_folder / name
if os.path.exists(args.job_dir / 'checkpoint.pth'):
args.resume = args.job_dir / 'checkpoint.pth'
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
args.use_volta32 = True
kwargs = {}
if args.use_volta32:
kwargs['slurm_constraint'] = 'volta32gb'
if args.comment:
kwargs['slurm_comment'] = args.comment
executor.update_parameters(
mem_gb= 80 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs
)
for k,v in params.items():
setattr(args,k,v)
executor.update_parameters(name=name)
args.dist_url = get_init_file(shared_folder).as_uri()
args.output_dir = args.job_dir
trainer = Trainer(args)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
if __name__ == "__main__":
main()