Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-contiguous input #54

Closed
sean-wade opened this issue Oct 14, 2019 · 1 comment

Comments

@sean-wade
Copy link

When I started to train cascade-RCNN, I got the error above... Is something I set is wrong ?

Here is my config setting:

(Base-RCNN-FPN.yaml):
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
NAME: "build_resnet_fpn_backbone"
RESNETS:
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
FPN:
IN_FEATURES: ["res2", "res3", "res4", "res5"]
ANCHOR_GENERATOR:
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
RPN:
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
# Detectron1 uses 2000 proposals per-batch,
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
POST_NMS_TOPK_TRAIN: 1000
POST_NMS_TOPK_TEST: 1000
ROI_HEADS:
NAME: "StandardROIHeads"
IN_FEATURES: ["p2", "p3", "p4", "p5"]
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
ROI_MASK_HEAD:
NAME: "MaskRCNNConvUpsampleHead"
NUM_CONV: 4
POOLER_RESOLUTION: 14
DATASETS:
TRAIN: ("voc_2007_trainval",)
TEST: ("voc_2007_minitest",)
SOLVER:
IMS_PER_BATCH: 4 #16
BASE_LR: 0.005 #0.02
STEPS: (60000, 80000)
MAX_ITER: 90000
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)

(cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml):
BASE: "../Base-RCNN-FPN.yaml"
VERSION: 2
MODEL:
MASK_ON: False #True
WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
RESNETS:
STRIDE_IN_1X1: False # this is a C2 model
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
DEPTH: 152
DEFORM_ON_PER_STAGE: [False, True, True, True]
ROI_HEADS:
NAME: "CascadeROIHeads"
NUM_CLASSES: 26
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_CONV: 4
NUM_FC: 1
NORM: "GN"
CLS_AGNOSTIC_BBOX_REG: True
ROI_MASK_HEAD:
NUM_CONV: 8
NORM: "GN"
RPN:
POST_NMS_TOPK_TRAIN: 2000
SOLVER:
IMS_PER_BATCH: 128
STEPS: (35000, 45000)
MAX_ITER: 50000
BASE_LR: 0.16
INPUT:
MIN_SIZE_TRAIN: (640, 864)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1440
CROP:
ENABLED: True
TEST:
EVAL_PERIOD: 2500
OUTPUT_DIR: "YJH/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv"

@sean-wade
Copy link
Author

I changed my INPUT config into the cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml. And it works...

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant