-
Notifications
You must be signed in to change notification settings - Fork 34
/
engine_pretrain.py
125 lines (106 loc) · 4.25 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
from typing import Iterable
import mae_st.util.lr_sched as lr_sched
import mae_st.util.misc as misc
import torch
from iopath.common.file_io import g_pathmgr as pathmgr
def train_one_epoch(
model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
args=None,
fp32=False,
):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter(
"cpu_mem", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"cpu_mem_all", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"gpu_mem", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"mask_ratio", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print("log_dir: {}".format(log_writer.log_dir))
for data_iter_step, (samples, _) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(
optimizer, data_iter_step / len(data_loader) + epoch, args
)
samples = samples.to(device, non_blocking=True)
if len(samples.shape) == 6:
b, r, c, t, h, w = samples.shape
samples = samples.reshape(b * r, c, t, h, w)
with torch.cuda.amp.autocast(enabled=not fp32):
loss, _, _ = model(
samples,
mask_ratio=args.mask_ratio,
)
loss_value = loss.item()
if not math.isfinite(loss_value):
for _ in range(args.num_checkpoint_del):
try:
path = misc.get_last_checkpoint(args)
pathmgr.rm(path)
print(f"remove checkpoint {path}")
except Exception as _:
pass
raise Exception("Loss is {}, stopping training".format(loss_value))
loss /= accum_iter
loss_scaler(
loss,
optimizer,
parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0,
clip_grad=args.clip_grad,
)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(cpu_mem=misc.cpu_mem_usage()[0])
metric_logger.update(cpu_mem_all=misc.cpu_mem_usage()[1])
metric_logger.update(gpu_mem=misc.gpu_mem_usage())
metric_logger.update(mask_ratio=args.mask_ratio)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int(
(data_iter_step / len(data_loader) + epoch) * 1000 * args.repeat_aug
)
log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x)
log_writer.add_scalar("lr", lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}