This repository was archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsample.py
146 lines (116 loc) · 4.99 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import torch
import numpy as np
import argparse
import pickle
import time
import os
import json
from torchvision import transforms
from PIL import Image
from utils.build_vocab import Vocabulary
from utils.model import EncoderCNN, DecoderRNN
from utils.visualize import show_upp
torch.manual_seed(7)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_openpose(video_path, openpose_path, seq_length):
openpose = []
for i in range(seq_length):
with open(os.path.join(video_path, openpose_path, "imxx" + str(i+1) + "_keypoints.json"), 'r') as f:
js = json.load(f)
if ('people' not in js) or (len(js['people']) <= 0) or ('pose_keypoints_2d' not in js['people'][0]):
pose2 = [0] * 75
else:
pose2 = js['people'][0]['pose_keypoints_2d']
openpose.append(pose2)
openpose = torch.Tensor(openpose)
return openpose
def load_homography(video_path, homography_path, seq_length):
homography = []
h = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] * 15;
homography.append(h)
for i in range(seq_length-1):
file = open(os.path.join(video_path, homography_path, "h" + str(i) + ".txt"))
h = file.read().split()
h = map(float, h)
homography.append(h)
homography = torch.Tensor(homography)
return homography
def load_video(video_path, seq_length, transform=None):
images = []
for i in range(seq_length):
image = Image.open(os.path.join(video_path, "imxx" + str(i + 1) + ".jpg")).convert('RGB')
if transform is not None:
image = transform(image)
images.append(image)
images = torch.stack(images).unsqueeze(0)
return images
def main(args):
transform = transforms.Compose([
transforms.Resize(args.crop_size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
upp_size, low_size = vocab.get_shapes()
start = time.time()
encoder = EncoderCNN(args.embed_size).eval()
if args.upp:
decoder = DecoderRNN(args.embed_size, args.hidden_size, upp_size+1, args.num_layers)
elif args.low:
decoder = DecoderRNN(args.embed_size, args.hidden_size, low_size+1, args.num_layers)
else:
print('Please specify upper/lower body model to test')
exit(0)
decoder.train(False)
encoder = encoder.to(device)
decoder = decoder.to(device)
encoder.load_state_dict(torch.load(args.encoder_path))
decoder.load_state_dict(torch.load(args.decoder_path))
video = load_video(args.image_dir, args.seq_length, transform)
video_tensor = video.to(device)
feature = encoder(video_tensor)
homography = load_homography(args.image_dir, args.h_dir, args.seq_length)
openpose = load_openpose(args.image_dir, args.openpose_dir, args.seq_length)
sampled_ids = decoder.sample(feature, homography, openpose)
end = time.time()
print "duration", (end-start)
sampled_ids = sampled_ids[0].cpu().numpy()
sampled_poses = []
for pose_id in sampled_ids:
if args.upp:
pose = vocab.upp_poses[pose_id-1]
elif args.low:
pose = vocab.low_poses[pose_id-1]
else:
print('Please specify upper/lower body model to test')
exit(0)
sampled_poses.append(pose)
if args.visualize:
pose3d = [float(x) for x in pose.split(',')]
pose3d = np.reshape(pose3d, (-1,3))
show_upp(pose3d)
for i in range(0, len(sampled_poses)):
path = args.output + 'r' + str(i+1) + '.txt'
with open(path, 'w') as f:
f.write(sampled_poses[i] + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--vocab_path', type=str, required=True, help='path for vocabulary wrapper')
parser.add_argument('--output', type=str, required=True, help='output directory to save the pose files to')
parser.add_argument('--encoder_path', type=str, required=True, help='path for trained encoder')
parser.add_argument('--decoder_path', type=str, required=True, help='path for trained decoder')
parser.add_argument('--upp', action='store_true', help='set flag if training upper body model')
parser.add_argument('--low', action='store_true', help='set flag if training lower body model')
parser.add_argument('--image_dir', type=str, default='images/', help='directory for resized images')
parser.add_argument('--h_dir', type=str, default='homographies/', help='directory for resized images')
parser.add_argument('--openpose_dir', type=str, default='openpose/', help='directory for resized images')
parser.add_argument('--embed_size', type=int , default=256, help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=512, help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=2, help='number of layers in lstm')
parser.add_argument('--seq_length', type=int, default=1024, help='length of the pose/video sequences')
parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images')
parser.add_argument('--visualize', action='store_true', help='set flag if training lower body model')
args = parser.parse_args()
main(args)