-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathdatasets.py
426 lines (359 loc) · 16.5 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#coding:utf-8
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as tvF
from torch.utils.data import Dataset, DataLoader
from utils import load_hdr_as_tensor
import os
from sys import platform
import numpy as np
import random
from string import ascii_letters
from PIL import Image, ImageFont, ImageDraw, ImageOps
import OpenEXR
from matplotlib import rcParams
rcParams['font.family'] = 'serif'
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
def load_dataset(root_dir, redux, params, shuffled=False, single=False):
"""Loads dataset and returns corresponding data loader."""
# Create Torch dataset
noise = (params.noise_type, params.noise_param)
# Instantiate appropriate dataset class
if params.noise_type == 'mc':
dataset = MonteCarloDataset(root_dir, redux, params.crop_size,
clean_targets=params.clean_targets)
else:
dataset = NoisyDataset(root_dir, redux, params.crop_size, params.resize_size,
clean_targets=params.clean_targets, noise_dist=noise, seed=params.seed)
# Use batch size of 1, if requested (e.g. test set)
if single:
return DataLoader(dataset, batch_size=1, shuffle=shuffled)
else:
return DataLoader(dataset, batch_size=params.batch_size, shuffle=shuffled, num_workers=params.num_workers, drop_last=True)
class AbstractDataset(Dataset):
"""Abstract dataset class for Noise2Noise."""
def __init__(self, root_dir, redux=0, crop_size=128, resize_size=640, clean_targets=False):
"""Initializes abstract dataset."""
super(AbstractDataset, self).__init__()
self.imgs = []
self.root_dir = root_dir
self.redux = redux
self.crop_size = crop_size
self.resize_size = resize_size
self.clean_targets = clean_targets
def _random_crop(self, img_list):
"""Performs random square crop of fixed size.
Works with list so that all items get the same cropped window (e.g. for buffers).
"""
w, h = img_list[0].size
assert w >= self.crop_size and h >= self.crop_size, \
f'Error: Crop size: {self.crop_size}, Image size: ({w}, {h})'
cropped_imgs = []
i = np.random.randint(0, h - self.crop_size + 1)
j = np.random.randint(0, w - self.crop_size + 1)
for img in img_list:
# Resize if dimensions are too small
if min(w, h) < self.crop_size:
img = tvF.resize(img, (self.crop_size, self.crop_size))
# Random crop
cropped_imgs.append(tvF.crop(img, i, j, self.crop_size, self.crop_size))
return cropped_imgs
def _resize(self, img_list):
"""Performs random square crop of fixed size.
Works with list so that all items get the same cropped window (e.g. for buffers).
"""
w, h = img_list[0].size
# print('===w, h:', w, h)
# assert w >= self.self.resize_size and h >= self.crop_size, \
# f'Error: Crop size: {self.crop_size}, Image size: ({w}, {h})'
resized_imgs = []
# i = np.random.randint(0, 0.3*self.resize_size-1)
# j = np.random.randint(0, 0.3*self.resize_size-1)
for img in img_list:
# #resize
# img = tvF.resize(img, (int(1.3*self.resize_size), int(1.3*self.resize_size)))
# try:
# img = tvF.crop(img, i, j, self.resize_size, self.resize_size)
# except:
img = tvF.resize(img, (self.resize_size, self.resize_size))
# print('==self.resize_size:' ,self.resize_size)
# print('====img.shape', img.size)
resized_imgs.append(img)
return resized_imgs
def __getitem__(self, index):
"""Retrieves image from data folder."""
raise NotImplementedError('Abstract method not implemented!')
def __len__(self):
"""Returns length of dataset."""
return len(self.imgs)
class NoisyDataset(AbstractDataset):
"""Class for injecting random noise into dataset."""
def __init__(self, root_dir, redux, crop_size, resize_size, clean_targets=False,
noise_dist=('gaussian', 50.), seed=None):
"""Initializes noisy image dataset."""
super(NoisyDataset, self).__init__(root_dir, redux, crop_size, resize_size, clean_targets)
self.imgs = os.listdir(root_dir)
if redux:
self.imgs = self.imgs[:redux]
# Noise parameters (max std for Gaussian, lambda for Poisson, nb of artifacts for text)
self.noise_type = noise_dist[0]
self.noise_param = noise_dist[1]
self.seed = seed
if self.seed:
np.random.seed(self.seed)
def _add_noise(self, img):
"""Adds Gaussian or Poisson noise to image."""
w, h = img.size
c = len(img.getbands())
# Poisson distribution
# It is unclear how the paper handles this. Poisson noise is not additive,
# it is data dependent, meaning that adding sampled valued from a Poisson
# will change the image intensity...
if self.noise_type == 'poisson':
noise = np.random.poisson(img)
noise_img = img + noise
noise_img = 255 * (noise_img / np.amax(noise_img))
# Normal distribution (default)
else:
if self.seed:
std = self.noise_param
else:
std = np.random.uniform(0, self.noise_param)
noise = np.random.normal(0, std, (h, w, c))
# Add noise and clip
noise_img = np.array(img) + noise
noise_img = np.clip(noise_img, 0, 255).astype(np.uint8)
return Image.fromarray(noise_img)
# def _add_text_overlay(self, img):
# """Adds text overlay to images."""
#
# assert self.noise_param < 1, 'Text parameter is an occupancy probability'
#
# w, h = img.size
# c = len(img.getbands())
#
# # Choose font and get ready to draw
# if platform == 'linux':
# serif = '/usr/share/fonts/truetype/dejavu/DejaVuSerif.ttf'
# else:
# serif = 'Times New Roman.ttf'
# text_img = img.copy()
# text_draw = ImageDraw.Draw(text_img)
#
# # Text binary mask to compute occupancy efficiently
# w, h = img.size
# mask_img = Image.new('1', (w, h))
# mask_draw = ImageDraw.Draw(mask_img)
#
# # Random occupancy in range [0, p]
# if self.seed:
# random.seed(self.seed)
# max_occupancy = self.noise_param
# else:
# max_occupancy = np.random.uniform(0, self.noise_param)
# def get_occupancy(x):
# y = np.array(x, dtype=np.uint8)
# return np.sum(y) / y.size
#
# # Add text overlay by choosing random text, length, color and position
# while 1:
# font = ImageFont.truetype(serif, np.random.randint(16, 21))
# length = np.random.randint(10, 25)
# chars = ''.join(random.choice(ascii_letters) for i in range(length))
# color = tuple(np.random.randint(0, 255, c))
# pos = (np.random.randint(0, w), np.random.randint(0, h))
# text_draw.text(pos, chars, color, font=font)
#
# # Update mask and check occupancy
# mask_draw.text(pos, chars, 1, font=font)
# if get_occupancy(mask_img) > max_occupancy:
# break
#
# return text_img
def _add_text_way_one(self, image):
ori_w, ori_h = image.size
h = 368
w = int(h/ori_h*ori_w)
image = image.resize((w, h))
if (640 - w) // 2>0:
image = ImageOps.expand(image, border=((640 - w) // 2, 0, (640 - w) // 2, 0), fill=0) ##left,top,right,bottom
resize_ori_img = image.copy()
c = len(image.getbands())
# Choose font and get ready to draw
if platform == 'linux':
font_path = '/red_detection/noise2noise/src/font'
fonts_list_path = [os.path.join(font_path, i) for i in os.listdir(font_path)]
serif = np.random.choice(fonts_list_path, 1)[0]
# serif = '/usr/share/fonts/truetype/dejavu/DejaVuSerif.ttf'
else:
serif = 'Times New Roman.ttf'
font = ImageFont.truetype(serif, random.randint(h // 8, h // 6))
if random.randint(0,4)!=0:
text = 'Adobe Stock'
else:
length = np.random.randint(10, 25)
text = ''.join(random.choice(ascii_letters) for i in range(length))
rgba_image = image.convert('RGBA')
text_overlay = Image.new('RGBA', rgba_image.size, (255, 255, 255, 0))
image_draw = ImageDraw.Draw(text_overlay)
# train
logo_color = (255, 255, 255, np.random.randint(60, 100))
if random.getrandbits(1):
image_draw.text((rgba_image.size[0]//3, rgba_image.size[1]//2), text, font=font, fill=logo_color)
else:
dis_x = np.random.randint(2, 5)
for i in range(0, rgba_image.size[0], rgba_image.size[0] // dis_x):
dis_y = np.random.randint(2, 5)
for j in range(0, rgba_image.size[1], rgba_image.size[1] // dis_y):
image_draw.text((i, j), text, font=font, fill=logo_color)
rotate_degree = 0#np.random.randint(-20, 20)
text_overlay = text_overlay.rotate(rotate_degree)
image_with_text = Image.alpha_composite(rgba_image, text_overlay)
# 裁切图片
image_with_text = image_with_text.crop((0, 0, image.size[0], image.size[1]))
return image_with_text.convert('RGB'), resize_ori_img.convert('RGB')
# #输入有水印 gt无水印
def _add_text_way_two(self, image):
TRANSPARENCY = random.randint(60, 90)
resize_ori_img = image.copy()
# TRANSPARENCY = 50
water_path = '/red_detection/noise2noise/src/water_imgs'
waters_list_path = [os.path.join(water_path, i) for i in os.listdir(water_path)]
water_list_path = np.random.choice(waters_list_path, 1)[0]
watermark_img = Image.open(water_list_path)
# watermark_img = watermark_img.rotate(-random.randint(1,21))
# water_w, water_h = watermark_img.size
paste_mask = watermark_img.split()[3].point(lambda i: i * TRANSPARENCY / 100.)
image.paste(watermark_img, (0, 0), mask=paste_mask)
# print('==image.size:', image.size)
image = image.resize((self.resize_size, self.resize_size)).copy()
resize_ori_img = resize_ori_img.resize((self.resize_size, self.resize_size))
return image.convert('RGB'),resize_ori_img.convert('RGB')
# # #输入有水印 gt也有水印
# def _add_text_way_two(self, image):
# TRANSPARENCY_1 = random.randint(60, 90)
# TRANSPARENCY_2 = random.randint(70, 90)
# resize_ori_img = image.copy()
#
# water_path = '/red_detection/noise2noise/src/water_imgs'
# waters_list_path = [os.path.join(water_path, i) for i in os.listdir(water_path)]
# random_nums = [i for i in range(len(waters_list_path))]
#
# random_num_1 = random.randint(0, len(waters_list_path)-1)
# # print('==random_num_1:', random_num_1)
# # print('===random_nums:', random_nums)
# random_nums.remove(random_num_1)
# random_num_2 = random.choice(random_nums)
#
# water_list_path_1 = waters_list_path[random_num_1]
# water_list_path_2 = waters_list_path[random_num_2]
#
# watermark_img_1 = Image.open(water_list_path_1)
# watermark_img_2 = Image.open(water_list_path_2)
#
# paste_mask_1 = watermark_img_1.split()[3].point(lambda i: i * TRANSPARENCY_1 / 100.)
# image.paste(watermark_img_1, (0, 0), mask=paste_mask_1)
# image = image.resize((self.resize_size, self.resize_size)).copy()
#
# watermark_img_2 = watermark_img_2.rotate(random.randint(-10, 10))
# paste_mask_2 = watermark_img_2.split()[3].point(lambda i: i * TRANSPARENCY_2 / 100.)
# resize_ori_img.paste(watermark_img_2, (0, 0), mask=paste_mask_2)
# resize_ori_img = resize_ori_img.resize((self.resize_size, self.resize_size)).copy()
#
# return image.convert('RGB'), resize_ori_img.convert('RGB')
def _add_text_overlay(self, image):
"""Adds text overlay to images."""
assert self.noise_param < 1, 'Text parameter is an occupancy probability'
# if random.randint(0, 4)==0:
return self._add_text_way_one(image)
# else:
# return self._add_text_way_two(image)
def _corrupt(self, img):
"""Corrupts images (Gaussian, Poisson, or text overlay)."""
if self.noise_type in ['gaussian', 'poisson']:
return self._add_noise(img)
elif self.noise_type == 'text':
return self._add_text_overlay(img)
else:
raise ValueError('Invalid noise type: {}'.format(self.noise_type))
def __getitem__(self, index):
"""Retrieves image from folder and corrupts it."""
# Load PIL image
img_path = os.path.join(self.root_dir, self.imgs[index])
img_ori = Image.open(img_path).convert('RGB')
if random.getrandbits(1):
img_ori = Image.fromarray(np.array(img_ori)[:, ::-1, :])
if random.getrandbits(1):
img, resize_ori_img = self._add_text_way_one(img_ori)
else:
img, resize_ori_img = self._add_text_way_two(img_ori)
if self.crop_size != 0:
img = self._random_crop([img])[0]
else:
img = self._resize([img])[0]
if self.crop_size != 0:
resize_ori_img = self._random_crop([resize_ori_img])[0]
else:
resize_ori_img = self._resize([resize_ori_img])[0]
# Corrupt source image
# tmp = self._corrupt(img)
source = tvF.to_tensor(img)
target = tvF.to_tensor(resize_ori_img)
return source, target
class MonteCarloDataset(AbstractDataset):
"""Class for dealing with Monte Carlo rendered images."""
def __init__(self, root_dir, redux, crop_size,
hdr_buffers=False, hdr_targets=True, clean_targets=False):
"""Initializes Monte Carlo image dataset."""
super(MonteCarloDataset, self).__init__(root_dir, redux, crop_size, clean_targets)
# Rendered images directories
self.root_dir = root_dir
self.imgs = os.listdir(os.path.join(root_dir, 'render'))
self.albedos = os.listdir(os.path.join(root_dir, 'albedo'))
self.normals = os.listdir(os.path.join(root_dir, 'normal'))
if redux:
self.imgs = self.imgs[:redux]
self.albedos = self.albedos[:redux]
self.normals = self.normals[:redux]
# Read reference image (converged target)
ref_path = os.path.join(root_dir, 'reference.png')
self.reference = Image.open(ref_path).convert('RGB')
# High dynamic range images
self.hdr_buffers = hdr_buffers
self.hdr_targets = hdr_targets
def __getitem__(self, index):
"""Retrieves image from folder and corrupts it."""
# Use converged image, if requested
if self.clean_targets:
target = self.reference
else:
target_fname = self.imgs[index].replace('render', 'target')
file_ext = '.exr' if self.hdr_targets else '.png'
target_fname = os.path.splitext(target_fname)[0] + file_ext
target_path = os.path.join(self.root_dir, 'target', target_fname)
if self.hdr_targets:
target = tvF.to_pil_image(load_hdr_as_tensor(target_path))
else:
target = Image.open(target_path).convert('RGB')
# Get buffers
render_path = os.path.join(self.root_dir, 'render', self.imgs[index])
albedo_path = os.path.join(self.root_dir, 'albedo', self.albedos[index])
normal_path = os.path.join(self.root_dir, 'normal', self.normals[index])
if self.hdr_buffers:
render = tvF.to_pil_image(load_hdr_as_tensor(render_path))
albedo = tvF.to_pil_image(load_hdr_as_tensor(albedo_path))
normal = tvF.to_pil_image(load_hdr_as_tensor(normal_path))
else:
render = Image.open(render_path).convert('RGB')
albedo = Image.open(albedo_path).convert('RGB')
normal = Image.open(normal_path).convert('RGB')
# Crop
if self.crop_size != 0:
buffers = [render, albedo, normal, target]
buffers = [tvF.to_tensor(b) for b in self._random_crop(buffers)]
# Stack buffers to create input volume
source = torch.cat(buffers[:3], dim=0)
target = buffers[3]
return source, target