-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdataset.py
282 lines (221 loc) · 9.29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
from PIL import Image
import torch
import random
import numpy as np
from torch.utils import data
from torchvision import transforms
from torchvision.transforms import functional as F
import numbers
import random
import pandas as pd
#random.seed(666)
class CoData(data.Dataset):
def __init__(self, img_root, gt_root, img_size, transform, max_num, group_dict, is_train):
class_list = os.listdir(img_root)
self.size = [img_size, img_size]
self.img_dirs = list(
map(lambda x: os.path.join(img_root, x), class_list))
self.gt_dirs = list(
map(lambda x: os.path.join(gt_root, x), class_list))
self.transform = transform
self.max_num = max_num
self.is_train = is_train
if self.is_train:
self.group_dict = group_dict
def __getitem__(self, item):
if self.is_train:
img_ls = self.group_dict[item]
subpaths = []
ori_sizes = []
if self.is_train:
_, other_item, img_ls = img_ls.strip().split(':')
other_item = int(other_item)
img_ls = img_ls.strip().split(',')
if img_ls[-1] == '':
img_ls = img_ls[:-1]
final_num = len(img_ls)
imgs = torch.Tensor(final_num, 3, self.size[0], self.size[1])
gts = torch.Tensor(final_num, 1, self.size[0], self.size[1])
img_paths = img_ls
gt_paths = []
old_cls_ls = []
cls_ls = []
for idx, img_item in enumerate(img_paths):
img_item, rotation, flip = img_item.split(';')
angle = float(rotation)
flip = float(flip)
#print(angle, flip)
gt_item = img_item.replace('images', 'gts').replace('.jpg', '.png')
cls_id = int(img_item.split('/')[-2])
old_cls_ls.append(cls_id)
img = Image.open(img_item).convert('RGB')
gt = Image.open(gt_item).convert('L')
img = img.resize((224, 224), Image.BILINEAR)
gt = gt.resize((224, 224), Image.NEAREST)
if flip == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
gt = gt.transpose(Image.FLIP_LEFT_RIGHT)
img, gt = F.rotate(img, angle, Image.BILINEAR, False, None), F.rotate(gt, angle, Image.NEAREST, False, None)
subpaths.append(os.path.join(img_item.split('/')[-2], img_item.split('/')[-1][:-4]+'.png'))
ori_sizes.append((img.size[1], img.size[0]))
[img, gt] = self.transform(img, gt)
imgs[idx] = img
gts[idx] = gt
for cls_item in old_cls_ls:
if cls_item == old_cls_ls[0]:
cls_ls.append(item)
else:
cls_ls.append(int(other_item))
else:
names = os.listdir(self.img_dirs[item])
num = len(names)
img_paths = list(
map(lambda x: os.path.join(self.img_dirs[item], x), names))
gt_paths = list(
map(lambda x: os.path.join(self.gt_dirs[item], x[:-4]+'.png'), names))
final_num = num
imgs = torch.Tensor(final_num, 3, self.size[0], self.size[1])
gts = torch.Tensor(final_num, 1, self.size[0], self.size[1])
for idx in range(final_num):
# print(idx)
img = Image.open(img_paths[idx]).convert('RGB')
gt = Image.open(gt_paths[idx]).convert('L')
subpaths.append(os.path.join(img_paths[idx].split('/')[-2], img_paths[idx].split('/')[-1][:-4]+'.png'))
ori_sizes.append((img.size[1], img.size[0]))
# ori_sizes += ((img.size[1], img.size[0]))
[img, gt] = self.transform(img, gt)
imgs[idx] = img
gts[idx] = gt
if self.is_train:
return imgs, gts, subpaths, ori_sizes, cls_ls
else:
return imgs, gts, subpaths, ori_sizes
def __len__(self):
return len(self.img_dirs)
class FixedResize(object):
def __init__(self, size):
self.size = (size, size) # size: (h, w)
def __call__(self, img, gt):
# assert img.size == gt.size
img = img.resize(self.size, Image.BILINEAR)
gt = gt.resize(self.size, Image.NEAREST)
return img, gt
class ToTensor(object):
def __call__(self, img, gt):
return F.to_tensor(img), F.to_tensor(gt)
class Normalize(object):
"""Normalize a tensor image with mean and standard deviation.
Args:
mean (tuple): means for each channel.
std (tuple): standard deviations for each channel.
"""
def __init__(self, mean=(0., 0., 0.), std=(1., 1., 1.)):
self.mean = mean
self.std = std
def __call__(self, img, gt):
img = F.normalize(img, self.mean, self.std)
return img, gt
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, gt):
if random.random() < self.p:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
gt = gt.transpose(Image.FLIP_LEFT_RIGHT)
#print(random.random())
return img, gt
class RandomRotation(object):
def __init__(self, degrees, resample=False, expand=False, center=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError("If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
@staticmethod
def get_params(degrees):
angle = random.uniform(degrees[0], degrees[1])
#print(angle)
return angle
def __call__(self, img, gt):
"""
img (PIL Image): Image to be rotated.
Returns:
PIL Image: Rotated image.
"""
angle = self.get_params(self.degrees)
return F.rotate(img, angle, Image.BILINEAR, self.expand, self.center), F.rotate(gt, angle, Image.NEAREST, self.expand, self.center)
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, gt):
for t in self.transforms:
img, gt = t(img, gt)
return img, gt
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
# get the dataloader (Note: without data augmentation)
def get_loader(img_root, gt_root, img_size, batch_size, max_num = float('inf'), istrain=True, shuffle=False, num_workers=0, epoch=None, pin=False):
if istrain:
transform = Compose([
#FixedResize(img_size),
#RandomHorizontalFlip(),
#RandomRotation((-90, 90)),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
transform = Compose([
FixedResize(img_size),
# RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
if istrain:
group_dict = {}
df = pd.read_csv('./df_dir/df_group_' + str(epoch) + '.csv')
cnt = 0
with open('./group_dir/group_' + str(epoch) + '.txt', 'r') as f:
for item in f.readlines():
epoch_cur, iter_cur, groups, img_ls = item.strip().split(':')
epoch_cur = int(epoch_cur)
iter_cur = int(iter_cur)
img_ls = img_ls.split(',')[:-1]
new_img_ls = ''
group_1, group_2 = groups.split(',')
group_1 = int(group_1)
group_2 = int(group_2)
for cnt_cur, img_cur in enumerate(img_ls):
df_cur = df[(df['img_path']==img_cur) & (df['item']==group_1)]
rotation_cur = df_cur['angle'].values[0]
flip_cur = df_cur['flip'].values[0]
new_img_ls += img_cur + ';' + str(rotation_cur) + ';' + str(flip_cur) + ','
group_dict[group_1] = str(cnt) + ':' + str(group_2) + ':' + new_img_ls #group_2
else:
group_dict = {}
dataset = CoData(img_root, gt_root, img_size, transform, max_num, group_dict, is_train=istrain)
data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers,
pin_memory=pin)
return data_loader
if __name__ == '__main__':
img_root = '/disk2TB/co-saliency/Dataset/CoSal2015/Image'
gt_root = '/disk2TB/co-saliency/Dataset/CoSal2015/GT'
loader = get_loader(img_root, gt_root, 224, 1)
for img, gt, subpaths, ori_sizes in loader:
# print(img.size())
# print(gt.size())
print(subpaths)
# print(ori_sizes)
print(ori_sizes[0][0].item())
break