-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVECM EST.R
252 lines (178 loc) · 7.28 KB
/
VECM EST.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
rm(list=ls())
setwd("D:/KeRjAaaAAAaaAaAAA/paper hargapangan")
library(devtools)
source_url("https://raw.githubusercontent.com/anguyen1210/var-tools/master/R/extract_varirf.R")
library(tidyverse)
library(tseries)
library(dplyr)
library(rio)
library(ggplot2)
library(scales)
library(vars)
library(urca)
library(stringr)
library(gridExtra)
library(lubridate)
library(tsDyn) # VECM Estimation
library(officer)
###take .xlsx name in a folder
listfile <- list.files(pattern = "Indonesia")
###import .xlsx based on list of names and append in a list
dat <- list()
for(i in 1:length(listfile)){
a <- readxl::read_excel(listfile[i],sheet = 2)
dat <- append(dat,list(a))
}
###using regex to clean names
datname <- listfile %>% gsub("^Indonesia |\\.xlsx$", "",.) %>% tolower()
names(dat) <- datname
list2env(dat, envir = .GlobalEnv)
###calculate rowMeans and subset variable then assign into
##new data.frame with the same name
for(i in 1:length(datname)){
nama <- datname[i]
a <- get(datname[i])
a[paste(nama)] <- rowMeans(get(datname[i])[,c(2:88)])
a <- a %>% dplyr::select(.,Date,paste(nama))
a$Date <- as.Date(a$Date)
assign(nama, a, envir = .GlobalEnv)
}
##merge each data.frames
datlist <- lapply(datname, get)
comp_dat2 <- Reduce(function(x, y) merge(x, y, by = "Date", all = TRUE), datlist)
comp_dat <- list()
for(i in 2:ncol(comp_dat2)){
a <- log(comp_dat2[i])
comp_dat <- append(comp_dat,a)
}
comp_dat <- data.frame(comp_dat)
comp_dat$Date <- comp_dat2$Date
comp_dat <- comp_dat[, c("Date", names(comp_dat)[names(comp_dat) != "Date"])]
######## Remove Saturday & Sunday ##########
comp_dat_level <- comp_dat
comp_dat_level$day <- weekdays(comp_dat_level$Date)
comp_dat_level <- comp_dat_level[comp_dat_level$day != "Saturday",]
comp_dat_level <- comp_dat_level[comp_dat_level$day != "Sunday",]
comp_dat_level <- comp_dat_level %>% dplyr::select(., c(-day))
# openxlsx::write.xlsx(comp_dat_level,"data level.xlsx")
comp_dat_level <- comp_dat_level %>% dplyr::select(., c(-Date))
comp_dat <- comp_dat_level ######<-The estimation starts from log transformation data
######## UNIT ROOT ##########
##adf.test
dtset2 <- list()
adf <- list()
pp <- list()
adf_d1 <- list()
pp_d1 <- list()
for(i in 1:ncol(comp_dat)){
dtset2[[i]]<-ts(comp_dat[,i],start = c(year = 2018, month = 1, day = 1),frequency = 366)
a <- adf.test(dtset2[[i]])
b <- adf.test(diff(dtset2[[i]]))
c <- pp.test(dtset2[[i]])
d <- pp.test(diff(dtset2[[i]]))
adf <- append(adf,a["p.value"])
adf_d1 <- append(adf_d1,b["p.value"])
pp <- append(pp,c["p.value"])
pp_d1 <- append(pp_d1,d["p.value"])
names(dtset2)[i] <- colnames(comp_dat)[i]
}
for(i in 1:length(adf)){
names(adf)[i] <- paste0(datname[i],"_adf")
names(adf_d1)[i] <- paste0(datname[i],"_adf")
names(pp)[i] <- paste0(datname[i],"_pp")
names(pp_d1)[i] <- paste0(datname[i],"_pp")
}
stat_test <- list("adf" = data.frame(adf),"adf_d1" = data.frame(adf_d1),
"pp" = data.frame(pp),"pp_d1" = data.frame(pp_d1))
stat_test2 <- t(data.frame(stat_test))
stat_test_df <- data.frame(stat_test) ### <-Stationarity test result (FIRST DIFF)
openxlsx::write.xlsx(stat_test_df, "HASIL ESTIMASI ADF PP_TOTAL.xlsx")
######## OPTIMAL LAG SELECTION ##########
diff_compdat <- comp_dat
diff_compdat <- diff_compdat[-1,]
# Calculate the first difference for each column except the time column
for (col in colnames(comp_dat)) {
diff_compdat[[col]] <- diff(comp_dat[[col]])
}
lagselect <- VARselect(diff_compdat, lag.max = 7, type = "both")
lagselect$selection
lagselect_res <- data.frame("AIC" = lagselect$selection[1],"HQ" = lagselect$selection[2],
"SC" = lagselect$selection[3], "FPE" = lagselect$selection[4])
opt_lag <- 6
######## COINTEGRATION TEST ##########
ctest1t <- ca.jo(comp_dat_level, type = "trace", ecdet = "const", K = opt_lag-1)
summary(ctest1t) ## <- coint == 4
ctest1t@V ## Identify Long-rung relationship (Cointegrating Vectors)
ctest1t@W ## Identify Adjustment Coefficient
ctest1e <- ca.jo(comp_dat_level, type = "eigen", ecdet = "trend", K = opt_lag-1,spec = "longrun")
summary(ctest1e) ## <- coint == 2 (Decided to use eigen)
ctest1e@V
ctest1e@teststat
cajorls(ctest1e,r = 2)
summary(cajorls(ctest1e, r = 2)$rlm)
##PERSAMAAN JANGKA PENDEK
dat <- summary(a$rlm)
##PERSAMAAN JANGKA PANJANG
library(stargazer)
stargazer(a$beta, type = "html", out = "LongRun_total.html")
varest <- VAR(diff_compdat, p = opt_lag, type = "both")
plot(roots(varest))
################## VECM ####################
## VECM
options(digits=9)
Model1 <- VECM(diff_compdat, lag = opt_lag, r = 2, estim =("ML"))
summary(Model1)$coefficient
summary(Model1)
summary(rank.test(Model1))
res <- summary(Model1)
res$Pvalues
stargazer(summary(Model1)$coefMat, type = "html", out = "LongRun_total.html",star.char = c("+", "*", "**", "***"),
star.cutoffs = c(0.1, 0.05, 0.01, 0.001),
notes = c("+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001"),
notes.append = T)
logLik(Model1)
t(Model1$model.specific$beta)
tes <- data.frame(summary(Model1)$coefMat)
Model1
coefs_all <- summary(Model1)$coefMat
# coefs_t <- summary(Model1)
# stargazer(coefs_t, type = "html", out = "VECM_total.html")
# options(scipen = 3)
coefs_all[grep("ECT", rownames(coefs_all)),]
ECT_total <- stargazer(coefs_all[grep("ECT", rownames(coefs_all)),], type = "html", out = "ECT_total.html")
varmod <- vec2var(ctest1t, r = 2)
vecm_beef <- irf(varmod, impulse = "beef", n.ahead = 20)
vecm_egg <- irf(varmod, impulse = "egg", n.ahead = 20)
vecm_cayenne <- irf(varmod, impulse = "cayenne", n.ahead = 20)
vecm_sugar <- irf(varmod, impulse = "sugar", n.ahead = 20)
vecm_shallot <- irf(varmod, impulse = "shallot", n.ahead = 20)
vecm_rice <- irf(varmod, impulse = "rice", n.ahead = 20)
vecm_chili <- irf(varmod, impulse = "red.chili", n.ahead = 20)
vecm_garlic <- irf(varmod, impulse = "garlic", n.ahead = 20)
vecm_oil <- irf(varmod, impulse = "cooking.oil", n.ahead = 20)
vecm_chicken <- irf(varmod, impulse = "chicken", n.ahead = 20)
Pattern1 <- list(mget(ls(pattern = "vecm_")))[[1]]
names(Pattern1) <- paste0("extr_", names(Pattern1))
irftest <- list()
for(i in names(Pattern1)){
a <- list(extract_varirf(Pattern1[[i]]))
irftest <- append(irftest,a)
}
names(irftest) <- names(Pattern1)
for(i in names(irftest)){
for(j in 2:11){
plotfile <- paste0("plot",colnames(irftest[[i]][j]),".png")
test <- ggplot(irftest[[i]], aes(x=irftest[[i]][,1], y=irftest[[i]][,j], ymin=irftest[[i]][,j+10], ymax=irftest[[i]][,j+20])) +
geom_hline(yintercept = 0, color="red") +
geom_ribbon(fill="grey", alpha=0.2) +
geom_line() +
theme_light() +
ggtitle(paste("Orthogonal impulse response from",sapply(strsplit(colnames(irftest[[i]])[j], "_"), function(x) x[2])))+
ylab(paste0("\u0394(log(",sapply(strsplit(colnames(irftest[[i]])[j], "_"), function(x) tail(x, 1)),"))"))+
xlab("Horizon") +
theme(plot.title = element_text(size = 13, hjust=0.5),
axis.title.y = element_text(size=11))
ggsave(paste0("IRF Res/",plotfile), plot = test, width = 8, height = 6, dpi = 300)
}
}
fevd(varmod, n.ahead = 50)