-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path5.py
99 lines (85 loc) · 2.99 KB
/
5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import csv
import random
import math
def loadcsv(filename):
lines = csv.reader(open(filename, "r"));
dataset = list(lines)
for i in range(len(dataset)):
#converting strings into numbers for processing
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitdataset(dataset, splitratio):
trainsize = int(len(dataset) * splitratio);
trainset = []
copy = list(dataset);
while len(trainset) < trainsize:
index = random.randrange(len(copy));
trainset.append(copy.pop(index))
return [trainset, copy]
def separatebyclass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)];
del summaries[-1] #excluding labels +ve or -ve
return summaries
def summarizebyclass(dataset):
separated = separatebyclass(dataset);
summaries = {}
for classvalue, instances in separated.items():
summaries[classvalue] = summarize(instances)
return summaries
def calculateprobability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateclassprobabilities(summaries, inputvector):
probabilities = {}
for classvalue, classsummaries in summaries.items():
probabilities[classvalue] = 1
for i in range(len(classsummaries)):
mean, stdev = classsummaries[i]
x = inputvector[i] #testvector's first attribute
probabilities[classvalue] *= calculateprobability(x, mean, stdev);
return probabilities
def predict(summaries, inputvector):
probabilities = calculateclassprobabilities(summaries, inputvector)
bestLabel, bestProb = None, -1
for classvalue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classvalue
return bestLabel
def getpredictions(summaries, testset):
predictions = []
for i in range(len(testset)):
result = predict(summaries, testset[i])
predictions.append(result)
return predictions
def getaccuracy(testset, predictions):
correct = 0
for i in range(len(testset)):
if testset[i][-1] == predictions[i]:
correct += 1
return (correct/float(len(testset))) * 100.0
def main():
filename = 'naivedata.csv'
splitratio = 0.67
dataset = loadcsv(filename);
trainingset, testset = splitdataset(dataset, splitratio)
print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset), len(trainingset), len(testset)))
summaries = summarizebyclass(trainingset);
predictions = getpredictions(summaries, testset)
accuracy = getaccuracy(testset, predictions)
print('Accuracy of the classifier is : {0}%'.format(accuracy))
main()