-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximumSubarray53.php
83 lines (61 loc) · 1.68 KB
/
MaximumSubarray53.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
<?php
declare(strict_types=1);
namespace Fathom\Leetcode\Easy;
/*
https://leetcode.com/problems/maximum-subarray/
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
*/
class MaximumSubarray53
{
// O(n)
public static function maxSubArray(array $nums): int
{
$res = PHP_INT_MIN;
$curSum = 0;
foreach ($nums as $num) {
$curSum = max($curSum + $num, $num);
$res = max($res, $curSum);
}
return $res;
}
// O(n*log(n))
public static function maxSubArray2(array $nums): int
{
if (empty($nums)) {
return 0;
}
return self::helper($nums, 0, count($nums) - 1);
}
private static function helper(array $nums, int $left, int $right): int
{
if ($left >= $right) {
return $nums[$left];
}
$mid = (int) ($left + ($right - $left) / 2);
$lmax = self::helper($nums, $left, $mid - 1);
$rmax = self::helper($nums, $mid + 1, $right);
$mmax = $nums[$mid];
$t = $mmax;
for ($i = $mid - 1; $i >= $left; --$i) {
$t += $nums[$i];
$mmax = max($mmax, $t);
}
$t = $mmax;
for ($i = $mid + 1; $i <= $right; ++$i) {
$t += $nums[$i];
$mmax = max($mmax, $t);
}
return max($mmax, $lmax, $rmax);
}
}