-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPrepare_ISIC2018.py
48 lines (39 loc) · 1.77 KB
/
Prepare_ISIC2018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Abdur. R. Fayjie, R. Azad, Claude Kauffman, Ismail Ben Ayed, Marco Pedersoli and Jose Dolz "Semi-supervised Few-Shot Learning for Medical Image Segmentation", arXiv preprint arXiv, 2020
import h5py
import numpy as np
import scipy.io as sio
import scipy.misc as sc
import glob
# Parameters
height = 224
width = 224
channels = 3
############################################################# Prepare ISIC 2018 data set #################################################
Dataset_add = '/ISIC2018/'
Tr_add = 'ISIC2018_Task1-2_Training_Input'
Tr_list = glob.glob(Dataset_add+ Tr_add+'/*.jpg')
# It contains 2594 training samples
Data_train_2018 = np.zeros([2594, height, width, channels])
Label_train_2018 = np.zeros([2594, height, width])
print('Reading ISIC 2018')
for idx in range(len(Tr_list)):
print(idx+1)
img = sc.imread(Tr_list[idx])
img = np.double(sc.imresize(img, [height, width, channels], interp='bilinear', mode = 'RGB'))
Data_train_2018[idx, :,:,:] = img
b = Tr_list[idx]
a = b[0:len(Dataset_add)]
b = b[len(b)-16: len(b)-4]
add = (a+ 'ISIC2018_Task1_Training_GroundTruth/' + b +'_segmentation.png')
img2 = sc.imread(add)
img2 = np.double(sc.imresize(img2, [height, width], interp='bilinear'))
Label_train_2018[idx, :,:] = img2
print('Reading ISIC 2018 finished')
################################################################ Make the train and test sets ########################################
# We consider 1000 samples for test and rest for training the unsupervised network
Train_img = Data_train_2018[0:1000]
Test_img = Data_train_2018[1000:]
Test_mask = Label_train_2018[1000:]
np.save('data_train_isic', Train_img)
np.save('data_test_isic' , Test_img)
np.save('mask_test_isic' , Test_mask)