-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtest.py
140 lines (116 loc) · 4.82 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
from datetime import datetime
import pandas as pd
from feast import FeatureStore
from feast.data_source import PushMode
def run_demo():
try:
os.environ["LOCAL_K8S_TOKEN"] = ""
store = FeatureStore(repo_path="/feature_repo")
print("\n--- Historical features for training ---")
fetch_historical_features_entity_df(store, for_batch_scoring=False)
print("\n--- Historical features for batch scoring ---")
fetch_historical_features_entity_df(store, for_batch_scoring=True)
try:
print("\n--- Load features into online store/materialize_incremental ---")
feature_views= store.list_feature_views()
if not feature_views:
raise PermissionError("No access to feature-views or no feature-views available.")
store.materialize_incremental(end_date=datetime.now())
except PermissionError as pe:
print(f"Permission error: {pe}")
except Exception as e:
print(f"An occurred while performing materialize incremental: {e}")
print("\n--- Online features ---")
fetch_online_features(store)
print("\n--- Online features retrieved (instead) through a feature service---")
fetch_online_features(store, source="feature_service")
print(
"\n--- Online features retrieved (using feature service v3, which uses a feature view with a push source---"
)
fetch_online_features(store, source="push")
print("\n--- Simulate a stream event ingestion of the hourly stats df ---")
event_df = pd.DataFrame.from_dict(
{
"driver_id": [1001],
"event_timestamp": [datetime.now()],
"created": [datetime.now()],
"conv_rate": [1.0],
"acc_rate": [1.0],
"avg_daily_trips": [1000],
}
)
store.push("driver_stats_push_source", event_df, to=PushMode.ONLINE_AND_OFFLINE)
print("\n--- Online features again with updated values from a stream push---")
fetch_online_features(store, source="push")
except Exception as e:
print(f"An error occurred: {e}")
def fetch_historical_features_entity_df(store: FeatureStore, for_batch_scoring: bool):
try:
entity_df = pd.DataFrame.from_dict(
{
"driver_id": [1001, 1002, 1003],
"event_timestamp": [
datetime(2021, 4, 12, 10, 59, 42),
datetime(2021, 4, 12, 8, 12, 10),
datetime(2021, 4, 12, 16, 40, 26),
],
"label_driver_reported_satisfaction": [1, 5, 3],
# values we're using for an on-demand transformation
"val_to_add": [1, 2, 3],
"val_to_add_2": [10, 20, 30],
}
)
if for_batch_scoring:
entity_df["event_timestamp"] = pd.to_datetime("now", utc=True)
training_df = store.get_historical_features(
entity_df=entity_df,
features=[
"driver_hourly_stats:conv_rate",
"driver_hourly_stats:acc_rate",
"driver_hourly_stats:avg_daily_trips",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
],
).to_df()
print(training_df.head())
except Exception as e:
print(f"An error occurred while fetching historical features: {e}")
def fetch_online_features(store, source: str = ""):
try:
entity_rows = [
# {join_key: entity_value}
{
"driver_id": 1001,
"val_to_add": 1000,
"val_to_add_2": 2000,
},
{
"driver_id": 1002,
"val_to_add": 1001,
"val_to_add_2": 2002,
},
]
if source == "feature_service":
features_to_fetch = store.get_feature_service("driver_activity_v1")
elif source == "push":
features_to_fetch = store.get_feature_service("driver_activity_v3")
else:
features_to_fetch = [
"driver_hourly_stats:acc_rate",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
]
returned_features = store.get_online_features(
features=features_to_fetch,
entity_rows=entity_rows,
).to_dict()
for key, value in sorted(returned_features.items()):
print(key, " : ", value)
except Exception as e:
print(f"An error occurred while fetching online features: {e}")
if __name__ == "__main__":
try:
run_demo()
except Exception as e:
print(f"An error occurred in the main execution: {e}")