-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_aic.py
200 lines (159 loc) · 7.08 KB
/
train_aic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
from transformers import GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup
import torch
from tqdm import tqdm
from torch.nn import functional as nnf
import os
import multiprocessing
import itertools
import numpy as np
import random
from torch.optim import Adam
from models import AICModel, TransformerConfig
from dataset import ClipCocoDataset
from torch.utils.data import Dataset, DataLoader
import evaluation
from evaluation import PTBTokenizer, Cider
use_device = torch.cuda.is_available()
device = torch.device('cuda:0' if use_device else 'cpu')
torch.backends.cudnn.benchmark = True
random.seed(1234)
torch.manual_seed(1234)
np.random.seed(1234)
def evaluate_metrics(model, test_dataloader, tokenizer, epoch):
model.eval()
gen = {}
gts = {}
with tqdm(desc='Epoch %d - evaluation' % epoch, unit='it', total=len(test_dataloader)) as pbar:
for idx, (tokens, _, img_features) in enumerate(test_dataloader):
img_features = img_features.to(device)
with torch.no_grad():
text, _ = model.beam_search(img_features, beam_size=5, out_size=1)
caps_gt = tokenizer.batch_decode(tokens)
caps_gen = tokenizer.batch_decode(text)
for i, (gts_i, gen_i) in enumerate(zip(caps_gt, caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gen['%d_%d' % (idx, i)] = [gen_i, ]
gts['%d_%d' % (idx, i)] = gts_i
pbar.update()
break
gts = evaluation.PTBTokenizer.tokenize(gts)
gen = evaluation.PTBTokenizer.tokenize(gen)
scores, _ = evaluation.compute_all_scores(gts, gen)
print(scores)
return scores
def train_xe(model, train_dataloader, args, optimizer, scheduler, epoch):
model.train()
running_loss = .0
progress = tqdm(total=len(train_dataloader), desc='AICModel')
for idx, (tokens, _, img_features) in enumerate(train_dataloader):
model.zero_grad()
tokens, img_features = tokens.to(device), img_features.to(device, dtype=torch.float32)
outputs = model(img_features, tokens)
loss = nnf.cross_entropy(outputs.reshape(-1, outputs.shape[-1]), tokens.flatten(), ignore_index=0)
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
running_loss += loss.item()
progress.set_postfix({"loss": running_loss / (idx + 1)})
progress.update()
break
progress.close()
return running_loss / len(train_dataloader)
def train_scst(model, train_dataloader, cider_train, args, optimizer, scheduler, epoch, tokenizer):
tokenizer_pool = multiprocessing.Pool()
running_reward = .0
running_reward_baseline = .0
model.train()
seq_len = model.language_decoder.max_len
running_loss = .0
beam_size = 5
with tqdm(desc='Epoch %d - train' % epoch, unit='it', total=len(train_dataloader)) as pbar:
for it, (caps_gt, _, img_features) in enumerate(train_dataloader):
img_features = img_features.to(device)
outs, log_probs, logits = model.beam_search(img_features, beam_size=beam_size, out_size=beam_size, return_logits=True)
optimizer.zero_grad()
# Rewards
caps_gen = tokenizer.batch_decode(outs.view(-1, seq_len))
caps_gt = list(itertools.chain(*([c, ] * beam_size for c in caps_gt)))
caps_gt = tokenizer.batch_decode(caps_gt)
caps_gen, caps_gt = tokenizer_pool.map(evaluation.PTBTokenizer.tokenize, [caps_gen, caps_gt])
reward = cider_train.compute_score(caps_gt, caps_gen)[1].astype(np.float32)
reward = torch.from_numpy(reward).to(device).view(img_features.shape[0], beam_size)
reward_baseline = torch.mean(reward, -1, keepdim=True)
loss = -torch.mean(log_probs, -1) * (reward - reward_baseline)
loss = loss.mean()
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.item()
running_reward += reward.mean().item()
running_reward_baseline += reward_baseline.mean().item()
pbar.set_postfix(loss=running_loss / (it + 1), reward=running_reward / (it + 1),
reward_baseline=running_reward_baseline / (it + 1))
pbar.update()
break
loss = running_loss / len(train_dataloader)
reward = running_reward / len(train_dataloader)
reward_baseline = running_reward_baseline / len(train_dataloader)
return loss, reward, reward_baseline
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='./data/train.pkl')
parser.add_argument('--tokenizer_path', default='./ckpt/gpt2')
parser.add_argument('--batch_size', default=5)
parser.add_argument('--lr', default=1e-2)
parser.add_argument('--epochs', default=10)
parser.add_argument('--warmup_steps', default=5000)
parser.add_argument('--out_dir', default='./ckpt')
parser.add_argument('--model_type', default='aic')
parser.add_argument('--phase', type=str, default='xe', choices=('xe', 'scst'))
args = parser.parse_args()
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_path)
dataset = ClipCocoDataset(args.data_path, tokenizer)
train_dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
ref_caps_train = list(tokenizer.decode(text) for text in dataset.captions_tokens)
cider_train = Cider(PTBTokenizer.tokenize(ref_caps_train))
config = TransformerConfig()
model = AICModel(config).to(device)
optimizer = AdamW(model.parameters(), lr=args.lr)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.epochs * len(train_dataloader)
)
use_rl = False
best_cider = .0
patience = 0
for epoch in range(args.epochs):
if not use_rl:
train_loss = train_xe(model, train_dataloader, args, optimizer, scheduler, epoch)
else:
train_loss, reward, reward_baseline = train_scst(model, train_dataloader, cider_train, args, optimizer, scheduler, epoch, tokenizer)
scores = evaluate_metrics(model, train_dataloader, tokenizer, epoch)
val_cider = scores['CIDEr']
best = False
if val_cider >= best_cider:
best_cider = val_cider
patience = 0
best = True
else:
patience += 1
switch_to_rl = False
exit_train = False
if patience == 5:
if not use_rl:
use_rl = True
switch_to_rl = True
patience = 0
optim = Adam(model.parameters(), lr=5e-6)
print("Switching to RL")
else:
print('patience reached.')
exit_train = True
torch.save(
model.state_dict(),
os.path.join(args.out_dir, f"{args.model_type}-{epoch:02d}.pt")
)
break
if __name__ == '__main__':
main()