-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_naic.py
141 lines (112 loc) · 5.05 KB
/
train_naic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from models import NAICDecoder, Encoder, NAICModel
from transformers import GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup
import random
import numpy as np
from dataset import ClipCocoDataset
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from torch.nn import functional as nnf
import itertools
import evaluation
from evaluation import PTBTokenizer, Cider
import os
import argparse
from models.configure import TransformerConfig
use_device = torch.cuda.is_available()
device = torch.device('cuda:0' if use_device else 'cpu')
torch.backends.cudnn.benchmark = True
random.seed(1234)
torch.manual_seed(1234)
np.random.seed(1234)
SPECIAL_TOKENS = ["<mask>"]
SPECIAL_TOKENS_DICT = {'additional_special_tokens': ["<mask>"]}
# mask sentence for generation, referring from huggingface
def mask_tokens(inputs, tokenizer, mask_probability):
labels = inputs.clone()
masked_indices = torch.bernoulli(torch.full(labels.shape, mask_probability)).bool()
labels[~masked_indices] = -1
inputs[masked_indices] = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)[0]
return inputs, labels
def train(model, train_dataloader, args, optimizer, scheduler, epoch, tokenizer):
model.train()
running_loss = .0
progress = tqdm(total=len(train_dataloader), desc='NAICModel')
for idx, (tokens, _, img_features) in enumerate(train_dataloader):
model.zero_grad()
tokens, img_features = tokens.to(device), img_features.to(device, dtype=torch.float32)
inputs, labels = mask_tokens(tokens, tokenizer, args.mask_probability)
outputs = model(img_features, inputs)
loss = nnf.cross_entropy(outputs.reshape(-1, outputs.shape[-1]), labels.flatten(), ignore_index=-1)
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
running_loss += loss.item()
progress.set_postfix({"loss": running_loss / (idx + 1)})
progress.update()
break
progress.close()
return running_loss / len(train_dataloader)
def evaluate_metrics(model, test_dataloader, tokenizer, epoch):
model.eval()
gen = {}
gts = {}
with tqdm(desc='Epoch %d - evaluation' % epoch, unit='it', total=len(test_dataloader)) as pbar:
for idx, (tokens, _, img_features) in enumerate(test_dataloader):
tokens, img_features = tokens.to(device), img_features.to(device, dtype=torch.float32)
with torch.no_grad():
inputs, labels = mask_tokens(tokens, tokenizer, 1.0)
logits = model(img_features, inputs)
gen_idx = torch.argmax(logits, -1)
caps_gt = tokenizer.batch_decode(tokens)
caps_gen = tokenizer.batch_decode(gen_idx)
for i, (gts_i, gen_i) in enumerate(zip(caps_gt, caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gen['%d_%d' % (idx, i)] = [gen_i, ]
gts['%d_%d' % (idx, i)] = gts_i
pbar.update()
break
gts = evaluation.PTBTokenizer.tokenize(gts)
gen = evaluation.PTBTokenizer.tokenize(gen)
scores, _ = evaluation.compute_all_scores(gts, gen)
print(scores)
return scores
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='./data/train.pkl')
parser.add_argument('--tokenizer_path', default='./ckpt/gpt2')
parser.add_argument('--batch_size', default=1)
parser.add_argument('--lr', default=1e-2)
parser.add_argument('--epochs', default=10)
parser.add_argument('--warmup_steps', default=5000)
parser.add_argument('--out_dir', default='./ckpt')
parser.add_argument('--model_type', default='naic')
parser.add_argument('--mask_probability', default=0.80)
args = parser.parse_args()
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_path)
# add mask token to vocabulary
tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
dataset = ClipCocoDataset(args.data_path, tokenizer, padding=False)
train_dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
#print(tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS))
config = TransformerConfig(vocab_size=len(tokenizer))
model = NAICModel(config).to(device)
optimizer = AdamW(model.parameters(), lr=args.lr)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.epochs * len(train_dataloader)
)
best_cider = .0
for epoch in range(args.epochs):
train_loss = train(model, train_dataloader, args, optimizer, scheduler, epoch, tokenizer)
scores = evaluate_metrics(model, train_dataloader, tokenizer, epoch)
val_cider = scores['CIDEr']
if val_cider >= best_cider:
best_cider = val_cider
torch.save(
model.state_dict(),
os.path.join(args.out_dir, f"{args.model_type}-{epoch:02d}.pt")
)
break
if __name__ == '__main__':
main()