-
Notifications
You must be signed in to change notification settings - Fork 700
/
what_is_pytorch.md
298 lines (270 loc) · 23.6 KB
/
what_is_pytorch.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
<h1>什么是 PyTorch?</h1>
PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:
<ul>
<li>NumPy 的替代品,可以利用 GPU 的性能进行计算。</li>
<li>深度学习研究平台拥有足够的灵活性和速度</li>
</ul>
<div id="getting-started" class="section">
<h2>开始学习</h2>
<div id="tensors" class="section">
<h3>Tensors (张量)</h3>
Tensors 类似于 NumPy 的 ndarrays ,同时 Tensors 可以使用 GPU 进行计算。
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">print_function</span>
<span class="kn">import</span> <span class="nn">torch</span></pre>
</div>
</div>
</div>
</div>
构造一个5x3矩阵,不初始化。
<div id="getting-started" class="section">
<div id="tensors" class="section">
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">(</span><span class="mf">1.00000e-04</span> <span class="o">*</span>
<span class="p">[[</span><span class="o">-</span><span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">1.5135</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">,</span> <span class="mf">0.0000</span><span class="p">]])</span></pre>
</div>
</div>
构造一个随机初始化的矩阵:
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span> <span class="mf">0.6291</span><span class="p">,</span> <span class="mf">0.2581</span><span class="p">,</span> <span class="mf">0.6414</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.9739</span><span class="p">,</span> <span class="mf">0.8243</span><span class="p">,</span> <span class="mf">0.2276</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.4184</span><span class="p">,</span> <span class="mf">0.1815</span><span class="p">,</span> <span class="mf">0.5131</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.5533</span><span class="p">,</span> <span class="mf">0.5440</span><span class="p">,</span> <span class="mf">0.0718</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">0.2908</span><span class="p">,</span> <span class="mf">0.1850</span><span class="p">,</span> <span class="mf">0.5297</span><span class="p">]])</span></pre>
</div>
</div>
构造一个矩阵全为 0,而且数据类型是 long.
Construct a matrix filled zeros and of dtype long:
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">long</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]])</span></pre>
</div>
</div>
构造一个张量,直接使用数据:
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">5.5</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([</span> <span class="mf">5.5000</span><span class="p">,</span> <span class="mf">3.0000</span><span class="p">])</span></pre>
</div>
</div>
创建一个 tensor 基于已经存在的 tensor。
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">new_ones</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">)</span>
<span class="c1"># new_* methods take in sizes</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span>
<span class="c1"># override dtype!</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># result has the same size</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">]],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.2183</span><span class="p">,</span> <span class="mf">0.4477</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.4053</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">1.7353</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0048</span><span class="p">,</span> <span class="mf">1.2177</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">1.1111</span><span class="p">,</span> <span class="mf">1.0878</span><span class="p">,</span> <span class="mf">0.9722</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.7771</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.2174</span><span class="p">,</span> <span class="mf">0.0412</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">2.1750</span><span class="p">,</span> <span class="mf">1.3609</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.3322</span><span class="p">]])</span></pre>
</div>
</div>
获取它的维度信息:
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">())</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">输出:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span></pre>
</div>
</div>
<div class="admonition note">
<p class="first admonition-title">注意</p>
<p class="last"><code class="docutils literal notranslate"><span class="pre">torch.Size</span></code> 是一个元组,所以它支持左右的元组操作。</p>
<p class="last"></p>
</div>
</div>
<div id="operations" class="section">
<h3>操作</h3>
在接下来的例子中,我们将会看到加法操作。
加法: 方式 1
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.1859</span><span class="p">,</span> <span class="mf">1.3970</span><span class="p">,</span> <span class="mf">0.5236</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">2.3854</span><span class="p">,</span> <span class="mf">0.0707</span><span class="p">,</span> <span class="mf">2.1970</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.3587</span><span class="p">,</span> <span class="mf">1.2359</span><span class="p">,</span> <span class="mf">1.8951</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.1189</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1376</span><span class="p">,</span> <span class="mf">0.4647</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">1.8968</span><span class="p">,</span> <span class="mf">2.0164</span><span class="p">,</span> <span class="mf">0.1092</span><span class="p">]])</span></pre>
</div>
</div>
加法: 方式2
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="k">print</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.1859</span><span class="p">,</span> <span class="mf">1.3970</span><span class="p">,</span> <span class="mf">0.5236</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">2.3854</span><span class="p">,</span> <span class="mf">0.0707</span><span class="p">,</span> <span class="mf">2.1970</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.3587</span><span class="p">,</span> <span class="mf">1.2359</span><span class="p">,</span> <span class="mf">1.8951</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.1189</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1376</span><span class="p">,</span> <span class="mf">0.4647</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">1.8968</span><span class="p">,</span> <span class="mf">2.0164</span><span class="p">,</span> <span class="mf">0.1092</span><span class="p">]])</span></pre>
</div>
</div>
加法: 提供一个输出 tensor 作为参数
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">result</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">result</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">result</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.1859</span><span class="p">,</span> <span class="mf">1.3970</span><span class="p">,</span> <span class="mf">0.5236</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">2.3854</span><span class="p">,</span> <span class="mf">0.0707</span><span class="p">,</span> <span class="mf">2.1970</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.3587</span><span class="p">,</span> <span class="mf">1.2359</span><span class="p">,</span> <span class="mf">1.8951</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.1189</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1376</span><span class="p">,</span> <span class="mf">0.4647</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">1.8968</span><span class="p">,</span> <span class="mf">2.0164</span><span class="p">,</span> <span class="mf">0.1092</span><span class="p">]])</span></pre>
</div>
</div>
加法: in-place
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="c1"># adds x to y</span>
<span class="n">y</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">y</span><span class="p">)</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.1859</span><span class="p">,</span> <span class="mf">1.3970</span><span class="p">,</span> <span class="mf">0.5236</span><span class="p">],</span>
<span class="p">[</span> <span class="mf">2.3854</span><span class="p">,</span> <span class="mf">0.0707</span><span class="p">,</span> <span class="mf">2.1970</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.3587</span><span class="p">,</span> <span class="mf">1.2359</span><span class="p">,</span> <span class="mf">1.8951</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.1189</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1376</span><span class="p">,</span> <span class="mf">0.4647</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">1.8968</span><span class="p">,</span> <span class="mf">2.0164</span><span class="p">,</span> <span class="mf">0.1092</span><span class="p">]])</span></pre>
</div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
注意
任何使张量会发生变化的操作都有一个前缀 '_'。例如:<code class="docutils literal notranslate"><span class="pre">x.copy_(y)</span></code>, <code class="docutils literal notranslate"><span class="pre">x.t_()</span></code>, 将会改变 <code class="docutils literal notranslate"><span class="pre">x</span></code>.
<p class="last">你可以使用标准的 NumPy 类似的索引操作</p>
</div>
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">])</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([</span> <span class="mf">0.4477</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0048</span><span class="p">,</span> <span class="mf">1.0878</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.2174</span><span class="p">,</span> <span class="mf">1.3609</span><span class="p">])</span></pre>
</div>
</div>
改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 <code class="docutils literal notranslate"><span class="pre">torch.view</span></code>:
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">16</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span> <span class="c1"># the size -1 is inferred from other dimensions</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span> <span class="n">z</span><span class="o">.</span><span class="n">size</span><span class="p">())</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">16</span><span class="p">])</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">8</span><span class="p">])</span></pre>
</div>
</div>
如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">item</span><span class="p">())</span></pre>
</div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-default notranslate">
<div class="highlight">
<pre><span class="n">tensor</span><span class="p">([</span> <span class="mf">0.9422</span><span class="p">])</span>
<span class="mf">0.9422121644020081</span></pre>
</div>
</div>
</div>
</div>
<div id="cuda-tensors" class="section">
<div class="sphx-glr-footer docutils container">
<div>PyTorch windows 安装教程:两行代码搞定 PyTorch 安装
http://pytorchchina.com/2018/12/11/pytorch-windows-install-1/
PyTorch Mac 安装教程
http://pytorchchina.com/2018/12/11/pytorch-mac-install/
PyTorch Linux 安装教程
http://pytorchchina.com/2018/12/11/pytorch-linux-install/
</div>
<div></div>
<div class="sphx-glr-download docutils container">PyTorch QQ群</div>
<div></div>
<div class="sphx-glr-download docutils container"><img class="alignnone wp-image-47 size-full" src="http://pytorchchina.com/wp-content/uploads/2018/12/WechatIMG1311.png" alt="" width="540" height="740" /></div>
</div>
</div>