forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_utils.ts
85 lines (76 loc) · 2.6 KB
/
image_utils.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as ImageManipulator from 'expo-image-manipulator';
import * as jpeg from 'jpeg-js';
export function toDataUri(base64: string): string {
return `data:image/jpeg;base64,${base64}`;
}
export async function resizeImage(
imageUrl: string, width: number): Promise<ImageManipulator.ImageResult> {
const actions = [{
resize: {
width,
},
}];
const saveOptions = {
compress: 0.75,
format: ImageManipulator.SaveFormat.JPEG,
base64: true,
};
const res =
await ImageManipulator.manipulateAsync(imageUrl, actions, saveOptions);
return res;
}
export async function base64ImageToTensor(base64: string):
Promise<tf.Tensor3D> {
const rawImageData = tf.util.encodeString(base64, 'base64');
const TO_UINT8ARRAY = true;
const {width, height, data} = jpeg.decode(rawImageData, TO_UINT8ARRAY);
// Drop the alpha channel info
const buffer = new Uint8Array(width * height * 3);
let offset = 0; // offset into original data
for (let i = 0; i < buffer.length; i += 3) {
buffer[i] = data[offset];
buffer[i + 1] = data[offset + 1];
buffer[i + 2] = data[offset + 2];
offset += 4;
}
return tf.tensor3d(buffer, [height, width, 3]);
}
export async function tensorToImageUrl(imageTensor: tf.Tensor3D):
Promise<string> {
const [height, width] = imageTensor.shape;
const buffer = await imageTensor.toInt().data();
const frameData = new Uint8Array(width * height * 4);
let offset = 0;
for (let i = 0; i < frameData.length; i += 4) {
frameData[i] = buffer[offset];
frameData[i + 1] = buffer[offset + 1];
frameData[i + 2] = buffer[offset + 2];
frameData[i + 3] = 0xFF;
offset += 3;
}
const rawImageData = {
data: frameData,
width,
height,
};
const jpegImageData = jpeg.encode(rawImageData, 75);
const base64Encoding = tf.util.decodeString(jpegImageData.data, 'base64');
return base64Encoding;
}