-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_retrieval.py
225 lines (208 loc) · 8.75 KB
/
compute_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import clip_score
from utils import *
from torchmetrics import Accuracy
import torch
import numpy as np
import torch.nn.functional as F
import argparse
import json
import os
import random
import warnings
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torchmetrics import Accuracy
import clip_score
from clip_score import extract_all_captions, extract_all_images
from dataset_paths import *
# the coefficient for distribution normalization used in our paper
LAMBDA = 0.25
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == 'cpu':
warnings.warn('Running on CPU.')
def main(args):
refs = []
images = []
dev_images = []
dev_refs = []
# load flickr30k dataset
if args.dataset == 'flickr30k':
dataset_path = Path(FLICKR30K_DIR, "flickr30k-images")
sentences_path = Path(IMAGE_CAPTION_METRICS, "flickr30k_sentences")
image_paths = os.listdir(dataset_path)
all_images = [i.replace('.jpg', '')
for i in image_paths if i.endswith('.jpg')]
# with open('/share/cuvl/image_caption_metrics/flickr30k_test.txt', 'r') as fb:
with open(Path(IMAGE_CAPTION_METRICS, 'flickr30k_test.txt'), 'r') as fb:
for line in fb:
image = line.strip()
image_path = Path(dataset_path, f"{image}.jpg")
images.append(str(image_path))
ref_path = Path(sentences_path, f"{image}.txt")
# ref_path = '/share/cuvl/image_caption_metrics/flickr30k_sentences/' + image + '.txt'
ref = []
with open(ref_path, 'r') as f2:
for raw in f2:
splitted = raw.split(' ')
processed = []
for s in splitted:
if '[' in s:
continue
else:
processed.append(s.replace(']', '').replace('\n', ''))
ref.append(' '.join(processed))
refs.append(ref)
for image in all_images:
dev_image_path = str(Path(dataset_path, f"{image}.jpg"))
if dev_image_path in images:
continue
dev_images.append(dev_image_path)
ref_path = Path(sentences_path, f"{image}.txt")
ref = []
with open(ref_path, 'r') as f2:
for raw in f2:
splitted = raw.split(' ')
processed = []
for s in splitted:
if '[' in s:
continue
else:
processed.append(
s.replace(']', '').replace('\n', ''))
ref.append(' '.join(processed))
dev_refs.append(ref)
assert len(dev_images) + len(images) == len(all_images)
# load mscoco dataset
elif args.dataset == 'mscoco':
with open(Path(MSCOCO_DIR, "annotations", "captions_val2014.json"), "r") as fb:
caption_dicts = json.load(fb)['annotations']
with open(Path(MSCOCO_DIR, "annotations", "coco_test_ids.npy"), "rb") as fb:
test_ids = set(np.load(fb))
with open(Path(MSCOCO_DIR, "annotations", "coco_dev_ids.npy"), "rb") as fb:
dev_ids = set(np.load(fb))
image2caption = {}
dev_image2caption = {}
for d in caption_dicts:
image = d['image_id']
if not d['id'] in test_ids:
continue
if not image in image2caption:
image2caption[image] = []
cap = d['caption'].strip().split(' ')
cap = ' '.join(cap)
image2caption[image].append(cap)
for d in caption_dicts:
image = d['image_id']
if not d['id'] in dev_ids:
continue
if not image in dev_image2caption:
dev_image2caption[image] = []
cap = d['caption'].strip().split(' ')
cap = ' '.join(cap)
dev_image2caption[image].append(cap)
for image, captions in image2caption.items():
img_path = Path(MSCOCO_DIR, "val2014", f"COCO_val2014_{str(image).rjust(12, '0')}.jpg")
images.append(str(img_path))
refs.append(captions)
for image, captions in dev_image2caption.items():
dev_img_path = Path(MSCOCO_DIR, "val2014", f"COCO_val2014_{str(image).rjust(12, '0')}.jpg")
dev_images.append(str(dev_img_path))
dev_refs.append(captions)
# load model
if args.dn:
model = clip_score.DNCLIPScore()
else:
model = clip_score.OriginalCLIPScore()
model.to(device)
print('====> Doing Retrieval')
compute_retrieval(model, images, refs, dev_images, dev_refs, device, args)
def compute_retrieval(model, images, refs, dev_images, dev_refs, device, args):
unique_images = []
unique_refs = []
saved = set()
for image, ref in zip(images, refs):
if not image in saved:
unique_images.append(image)
unique_refs.append(ref)
saved.add(image)
images = unique_images
refs = unique_refs
all_refs = []
# labels is the corresponding image of the ref
labels = []
for i, rs in enumerate(refs):
for r in rs:
all_refs.append(r)
labels.append(i)
dev_all_refs = []
for _, rs in enumerate(dev_refs):
for r in rs:
dev_all_refs.append(r)
image_features = extract_all_images(images, model.clip, device).cpu()
text_features = extract_all_captions(all_refs, model.clip, device).cpu()
labels = torch.Tensor(labels).long()
if args.image_to_text:
print("Image to Text")
else:
print("Text to Image")
top1s = []
top5s = []
top10s = []
for _ in range(args.num_experiments):
_image_features = image_features
_text_features = text_features
# image_means, text_means = get_mscoco_mean(model, device)
if args.dn:
dev_image_features = extract_all_images(random.sample(
dev_images, args.num_samples), model.clip, device).cpu()
dev_text_features = extract_all_captions(random.sample(
dev_all_refs, args.num_samples), model.clip, device).cpu()
_image_features = _image_features - LAMBDA * \
torch.mean(dev_image_features, dim=0)
_text_features = _text_features - LAMBDA * \
torch.mean(dev_text_features, dim=0)
sim = (_text_features @ _image_features.T).cpu()
if args.image_to_text:
sim = sim.T
indexes = torch.argsort(sim, dim=1, descending=True)[:, :10]
w, h = indexes.size()
index_labels = torch.zeros(w, h).long()
for i in range(w):
for j in range(h):
index_labels[i, j] = labels[indexes[i, j]]
top1 = torch.mean(torch.where(
torch.sum(index_labels[:, :1] == torch.arange(w).reshape(-1, 1), dim=1) > 0, 1.0, 0.0))
top5 = torch.mean(torch.where(
torch.sum(index_labels[:, :5] == torch.arange(w).reshape(-1, 1), dim=1) > 0, 1.0, 0.0))
top10 = torch.mean(torch.where(
torch.sum(index_labels == torch.arange(w).reshape(-1, 1), dim=1) > 0, 1.0, 0.0))
else:
num_classes_img = sim.size(1)
top1 = Accuracy(top_k=1, task="multiclass",
num_classes=num_classes_img)(sim, labels)
top5 = Accuracy(top_k=5, task="multiclass",
num_classes=num_classes_img)(sim, labels)
top10 = Accuracy(top_k=10, task="multiclass",
num_classes=num_classes_img)(sim, labels)
top1s.append(top1*100)
top5s.append(top5*100)
top10s.append(top10*100)
print(f'Top-1 Accuracy: {np.mean(top1s)}')
print(f'Top-1 Std {np.std(top1s)}')
print(f'Top-5 Accuracy: {np.mean(top5s)}')
print(f'Top-5 Std {np.std(top5s)}')
print(f'Top-10 Accuracy: {np.mean(top10s)}')
print(f'Top-10 Std {np.std(top10s)}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default="flickr30k", choices=["flickr30k", "mscoco"], type=str)
parser.add_argument('--num_samples', default=100, type=int)
parser.add_argument('--num_experiments', default=5, type=int)
parser.add_argument('--dn', action="store_true", default=False)
retrieval_task = parser.add_mutually_exclusive_group()
retrieval_task.add_argument('--image_to_text', action="store_true", default=True)
retrieval_task.add_argument('--text_to_image', dest='image_to_text', action='store_false')
args = parser.parse_args()
main(args)