forked from yoheinakajima/instagraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
283 lines (228 loc) · 7.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import json
import logging
import os
import re
import instructor
import openai
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from flask import Flask, jsonify, render_template, request
from graphviz import Digraph
from drivers.driver import Driver
from drivers.falkordb import FalkorDB
from drivers.neo4j import Neo4j
from models import KnowledgeGraph
instructor.patch()
load_dotenv()
app = Flask(__name__)
# Set your OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
response_data = ""
# If a Graph database set, then driver is used to store information
driver: Driver | None = None
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
logging.info("web scrape done")
return text
# Function to check user plan
def check_if_free_plan():
"""
receive USER_PLAN from .env.
Added default None, as this project won't be in free plan in production mode.
Returns:
bool: _description_
"""
return os.environ.get("USER_PLAN", None) == "free"
# Rate limiting
@app.after_request
def add_header(response):
"""
add response header if free plan.
Args:
response (_type_): _description_
Returns:
_type_: _description_
"""
if check_if_free_plan():
response.headers["Retry-After"] = 20
return response
def correct_json(json_str):
"""
Corrects the JSON response from OpenAI to be valid JSON by removing trailing commas
"""
while ",\s*}" in json_str or ",\s*]" in json_str: # noqa: W605
json_str = re.sub(r",\s*}", "}", json_str)
json_str = re.sub(r",\s*]", "]", json_str)
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
logging.error(
"SanitizationError: %s for JSON: %s", str(e), json_str, exc_info=True
)
return None
@app.route("/get_response_data", methods=["POST"])
def get_response_data():
global response_data
user_input = request.json.get("user_input", "")
if not user_input:
return jsonify({"error": "No input provided"}), 400
if user_input.startswith("http"):
user_input = scrape_text_from_url(user_input)
if user_input.startswith("+"):
prompt = "\n".join(
[
"Please update the knowledge graph based on the instruction.",
json.dumps(
dict(instruction=user_input[1:], knowledge_graph=response_data)
),
]
)
else:
prompt = f"Help me understand following by describing as a detailed knowledge graph: {user_input}"
logging.info("starting openai call: %s", prompt)
try:
completion: KnowledgeGraph = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": prompt,
}
],
response_model=KnowledgeGraph,
)
# Its now a dict, no need to worry about json loading so many times
response_data = completion.model_dump()
# copy "from_" prop to "from" prop on all edges
edges = response_data["edges"]
def _restore(e):
e["from"] = e["from_"]
return e
response_data["edges"] = [_restore(e) for e in edges]
except openai.error.RateLimitError as e:
# request limit exceeded or something.
logging.warning("%s", e)
return jsonify({"error": "rate limitation"}), 429
except Exception as e:
# general exception handling
logging.error("%s", e)
return jsonify({"error": "unknown error"}), 400
try:
if driver:
results = driver.get_response_data(response_data)
logging.info("Results from Graph:", results)
except Exception as e:
logging.error("An error occurred during the Graph operation: %s", e)
return (
jsonify(
{"error": "An error occurred during the Graph operation: {}".format(e)}
),
500,
)
return response_data, 200
# Function to visualize the knowledge graph using Graphviz
@app.route("/graphviz", methods=["POST"])
def visualize_knowledge_graph_with_graphviz():
global response_data
dot = Digraph(comment="Knowledge Graph")
response_dict = response_data
# Add nodes to the graph
for node in response_dict.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})")
# Add edges to the graph
for edge in response_dict.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"])
# Render and visualize
dot.render("knowledge_graph.gv", view=False)
# Render to PNG format and save it
dot.format = "png"
dot.render("static/knowledge_graph", view=False)
# Construct the URL pointing to the generated PNG
png_url = f"{request.url_root}static/knowledge_graph.png"
return jsonify({"png_url": png_url}), 200
@app.route("/get_graph_data", methods=["POST"])
def get_graph_data():
try:
if driver:
(nodes, edges) = driver.get_graph_data()
else:
global response_data
# print(response_data)
response_dict = response_data
# Assume response_data is global or passed appropriately
nodes = [
{
"data": {
"id": node["id"],
"label": node["label"],
"color": node.get("color", "defaultColor"),
}
}
for node in response_dict["nodes"]
]
edges = [
{
"data": {
"source": edge["from"],
"target": edge["to"],
"label": edge["relationship"],
"color": edge.get("color", "defaultColor"),
}
}
for edge in response_dict["edges"]
]
return jsonify({"elements": {"nodes": nodes, "edges": edges}})
except Exception:
return jsonify({"elements": {"nodes": [], "edges": []}})
@app.route("/get_graph_history", methods=["GET"])
def get_graph_history():
try:
page = request.args.get("page", default=1, type=int)
per_page = 10
skip = (page - 1) * per_page
result = (
driver.get_graph_history(skip, per_page)
if driver
else {
"graph_history": [],
"error": "Graph driver not initialized",
"graph": False,
}
)
return jsonify(result)
except Exception as e:
logging.error("%s", e)
return jsonify({"error": str(e), "graph": driver is not None}), 500
@app.route("/")
def index():
return render_template("index.html")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="InstaGraph")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--port", type=int, dest="port_num", default=8080)
parser.add_argument("--graph", type=str, dest="graph_db", default="neo4j")
args = parser.parse_args()
port = args.port_num
graph = args.graph_db
if graph.lower() == "neo4j":
driver = Neo4j()
elif graph.lower() == "falkordb":
driver = FalkorDB()
else:
# Default try to connect to Neo4j for backward compatibility
try:
driver = Neo4j()
except Exception:
driver = None
if args.debug:
app.run(debug=True, host="0.0.0.0", port=port)
else:
app.run(host="0.0.0.0", port=port)