-
Notifications
You must be signed in to change notification settings - Fork 2k
/
retinanet.py
executable file
·403 lines (323 loc) · 16.4 KB
/
retinanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from tensorflow import keras
from .. import initializers
from .. import layers
from ..utils.anchors import AnchorParameters
from . import assert_training_model
def default_classification_model(
num_classes,
num_anchors,
pyramid_feature_size=256,
prior_probability=0.01,
classification_feature_size=256,
name='classification_submodel'
):
""" Creates the default classification submodel.
Args
num_classes : Number of classes to predict a score for at each feature level.
num_anchors : Number of anchors to predict classification scores for at each feature level.
pyramid_feature_size : The number of filters to expect from the feature pyramid levels.
classification_feature_size : The number of filters to use in the layers in the classification submodel.
name : The name of the submodel.
Returns
A keras.models.Model that predicts classes for each anchor.
"""
options = {
'kernel_size' : 3,
'strides' : 1,
'padding' : 'same',
}
if keras.backend.image_data_format() == 'channels_first':
inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None))
else:
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = inputs
for i in range(4):
outputs = keras.layers.Conv2D(
filters=classification_feature_size,
activation='relu',
name='pyramid_classification_{}'.format(i),
kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None),
bias_initializer='zeros',
**options
)(outputs)
outputs = keras.layers.Conv2D(
filters=num_classes * num_anchors,
kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None),
bias_initializer=initializers.PriorProbability(probability=prior_probability),
name='pyramid_classification',
**options
)(outputs)
# reshape output and apply sigmoid
if keras.backend.image_data_format() == 'channels_first':
outputs = keras.layers.Permute((2, 3, 1), name='pyramid_classification_permute')(outputs)
outputs = keras.layers.Reshape((-1, num_classes), name='pyramid_classification_reshape')(outputs)
outputs = keras.layers.Activation('sigmoid', name='pyramid_classification_sigmoid')(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def default_regression_model(num_values, num_anchors, pyramid_feature_size=256, regression_feature_size=256, name='regression_submodel'):
""" Creates the default regression submodel.
Args
num_values : Number of values to regress.
num_anchors : Number of anchors to regress for each feature level.
pyramid_feature_size : The number of filters to expect from the feature pyramid levels.
regression_feature_size : The number of filters to use in the layers in the regression submodel.
name : The name of the submodel.
Returns
A keras.models.Model that predicts regression values for each anchor.
"""
# All new conv layers except the final one in the
# RetinaNet (classification) subnets are initialized
# with bias b = 0 and a Gaussian weight fill with stddev = 0.01.
options = {
'kernel_size' : 3,
'strides' : 1,
'padding' : 'same',
'kernel_initializer' : keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None),
'bias_initializer' : 'zeros'
}
if keras.backend.image_data_format() == 'channels_first':
inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None))
else:
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = inputs
for i in range(4):
outputs = keras.layers.Conv2D(
filters=regression_feature_size,
activation='relu',
name='pyramid_regression_{}'.format(i),
**options
)(outputs)
outputs = keras.layers.Conv2D(num_anchors * num_values, name='pyramid_regression', **options)(outputs)
if keras.backend.image_data_format() == 'channels_first':
outputs = keras.layers.Permute((2, 3, 1), name='pyramid_regression_permute')(outputs)
outputs = keras.layers.Reshape((-1, num_values), name='pyramid_regression_reshape')(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def __create_pyramid_features(backbone_layers, pyramid_levels, feature_size=256):
""" Creates the FPN layers on top of the backbone features.
Args
backbone_layers: a dictionary containing feature stages C3, C4, C5 from the backbone. Also contains C2 if provided.
pyramid_levels: Pyramid levels in use.
feature_size : The feature size to use for the resulting feature levels.
Returns
output_layers : A dict of feature levels. P3, P4, P5, P6 are always included. P2, P6, P7 included if in use.
"""
output_layers = {}
# upsample C5 to get P5 from the FPN paper
P5 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C5_reduced')(backbone_layers['C5'])
P5_upsampled = layers.UpsampleLike(name='P5_upsampled')([P5, backbone_layers['C4']])
P5 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P5')(P5)
output_layers["P5"] = P5
# add P5 elementwise to C4
P4 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C4_reduced')(backbone_layers['C4'])
P4 = keras.layers.Add(name='P4_merged')([P5_upsampled, P4])
P4_upsampled = layers.UpsampleLike(name='P4_upsampled')([P4, backbone_layers['C3']])
P4 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P4')(P4)
output_layers["P4"] = P4
# add P4 elementwise to C3
P3 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C3_reduced')(backbone_layers['C3'])
P3 = keras.layers.Add(name='P3_merged')([P4_upsampled, P3])
if 'C2' in backbone_layers and 2 in pyramid_levels:
P3_upsampled = layers.UpsampleLike(name='P3_upsampled')([P3, backbone_layers['C2']])
P3 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P3')(P3)
output_layers["P3"] = P3
if 'C2' in backbone_layers and 2 in pyramid_levels:
P2 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C2_reduced')(backbone_layers['C2'])
P2 = keras.layers.Add(name='P2_merged')([P3_upsampled, P2])
P2 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P2')(P2)
output_layers["P2"] = P2
# "P6 is obtained via a 3x3 stride-2 conv on C5"
if 6 in pyramid_levels:
P6 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P6')(backbone_layers['C5'])
output_layers["P6"] = P6
# "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6"
if 7 in pyramid_levels:
if 6 not in pyramid_levels:
raise ValueError("P6 is required to use P7")
P7 = keras.layers.Activation('relu', name='C6_relu')(P6)
P7 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P7')(P7)
output_layers["P7"] = P7
return output_layers
def default_submodels(num_classes, num_anchors):
""" Create a list of default submodels used for object detection.
The default submodels contains a regression submodel and a classification submodel.
Args
num_classes : Number of classes to use.
num_anchors : Number of base anchors.
Returns
A list of tuple, where the first element is the name of the submodel and the second element is the submodel itself.
"""
return [
('regression', default_regression_model(4, num_anchors)),
('classification', default_classification_model(num_classes, num_anchors))
]
def __build_model_pyramid(name, model, features):
""" Applies a single submodel to each FPN level.
Args
name : Name of the submodel.
model : The submodel to evaluate.
features : The FPN features.
Returns
A tensor containing the response from the submodel on the FPN features.
"""
return keras.layers.Concatenate(axis=1, name=name)([model(f) for f in features])
def __build_pyramid(models, features):
""" Applies all submodels to each FPN level.
Args
models : List of submodels to run on each pyramid level (by default only regression, classifcation).
features : The FPN features.
Returns
A list of tensors, one for each submodel.
"""
return [__build_model_pyramid(n, m, features) for n, m in models]
def __build_anchors(anchor_parameters, features):
""" Builds anchors for the shape of the features from FPN.
Args
anchor_parameters : Parameteres that determine how anchors are generated.
features : The FPN features.
Returns
A tensor containing the anchors for the FPN features.
The shape is:
```
(batch_size, num_anchors, 4)
```
"""
anchors = [
layers.Anchors(
size=anchor_parameters.sizes[i],
stride=anchor_parameters.strides[i],
ratios=anchor_parameters.ratios,
scales=anchor_parameters.scales,
name='anchors_{}'.format(i)
)(f) for i, f in enumerate(features)
]
return keras.layers.Concatenate(axis=1, name='anchors')(anchors)
def retinanet(
inputs,
backbone_layers,
num_classes,
num_anchors = None,
create_pyramid_features = __create_pyramid_features,
pyramid_levels = None,
submodels = None,
name = 'retinanet'
):
""" Construct a RetinaNet model on top of a backbone.
This model is the minimum model necessary for training (with the unfortunate exception of anchors as output).
Args
inputs : keras.layers.Input (or list of) for the input to the model.
num_classes : Number of classes to classify.
num_anchors : Number of base anchors.
create_pyramid_features : Functor for creating pyramid features given the features C3, C4, C5, and possibly C2 from the backbone.
pyramid_levels : pyramid levels to use.
submodels : Submodels to run on each feature map (default is regression and classification submodels).
name : Name of the model.
Returns
A keras.models.Model which takes an image as input and outputs generated anchors and the result from each submodel on every pyramid level.
The order of the outputs is as defined in submodels:
```
[
regression, classification, other[0], other[1], ...
]
```
"""
if num_anchors is None:
num_anchors = AnchorParameters.default.num_anchors()
if submodels is None:
submodels = default_submodels(num_classes, num_anchors)
if pyramid_levels is None:
pyramid_levels = [3, 4, 5, 6, 7]
if 2 in pyramid_levels and 'C2' not in backbone_layers:
raise ValueError("C2 not provided by backbone model. Cannot create P2 layers.")
if 3 not in pyramid_levels or 4 not in pyramid_levels or 5 not in pyramid_levels:
raise ValueError("pyramid levels 3, 4, and 5 required for functionality")
# compute pyramid features as per https://arxiv.org/abs/1708.02002
features = create_pyramid_features(backbone_layers, pyramid_levels)
feature_list = [features['P{}'.format(p)] for p in pyramid_levels]
# for all pyramid levels, run available submodels
pyramids = __build_pyramid(submodels, feature_list)
return keras.models.Model(inputs=inputs, outputs=pyramids, name=name)
def retinanet_bbox(
model = None,
nms = True,
class_specific_filter = True,
name = 'retinanet-bbox',
anchor_params = None,
pyramid_levels = None,
nms_threshold = 0.5,
score_threshold = 0.05,
max_detections = 300,
parallel_iterations = 32,
**kwargs
):
""" Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly.
This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph.
These layers include applying the regression values to the anchors and performing NMS.
Args
model : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs.
nms : Whether to use non-maximum suppression for the filtering step.
class_specific_filter : Whether to use class specific filtering or filter for the best scoring class only.
name : Name of the model.
anchor_params : Struct containing anchor parameters. If None, default values are used.
pyramid_levels : pyramid levels to use.
nms_threshold : Threshold for the IoU value to determine when a box should be suppressed.
score_threshold : Threshold used to prefilter the boxes with.
max_detections : Maximum number of detections to keep.
parallel_iterations : Number of batch items to process in parallel.
**kwargs : Additional kwargs to pass to the minimal retinanet model.
Returns
A keras.models.Model which takes an image as input and outputs the detections on the image.
The order is defined as follows:
```
[
boxes, scores, labels, other[0], other[1], ...
]
```
"""
# if no anchor parameters are passed, use default values
if anchor_params is None:
anchor_params = AnchorParameters.default
# create RetinaNet model
if model is None:
model = retinanet(num_anchors=anchor_params.num_anchors(), **kwargs)
else:
assert_training_model(model)
if pyramid_levels is None:
pyramid_levels = [3, 4, 5, 6, 7]
assert len(pyramid_levels) == len(anchor_params.sizes), \
"number of pyramid levels {} should match number of anchor parameter sizes {}".format(len(pyramid_levels),
len(anchor_params.sizes))
pyramid_layer_names = ['P{}'.format(p) for p in pyramid_levels]
# compute the anchors
features = [model.get_layer(p_name).output for p_name in pyramid_layer_names]
anchors = __build_anchors(anchor_params, features)
# we expect the anchors, regression and classification values as first output
regression = model.outputs[0]
classification = model.outputs[1]
# "other" can be any additional output from custom submodels, by default this will be []
other = model.outputs[2:]
# apply predicted regression to anchors
boxes = layers.RegressBoxes(name='boxes')([anchors, regression])
boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes])
# filter detections (apply NMS / score threshold / select top-k)
detections = layers.FilterDetections(
nms = nms,
class_specific_filter = class_specific_filter,
name = 'filtered_detections',
nms_threshold = nms_threshold,
score_threshold = score_threshold,
max_detections = max_detections,
parallel_iterations = parallel_iterations
)([boxes, classification] + other)
# construct the model
return keras.models.Model(inputs=model.inputs, outputs=detections, name=name)