Skip to content

Latest commit

 

History

History
 
 

GNN Fraud detection on DGL

This folder contains below code,

  • train RGCN model with DGL by container image in Amazon SageMaker;
  • deploy the inference endpoint with code in Amazon SageMaker;
  • test client for inference endpoint;
  • Jupyter notebooks go through the process of training model, deploying inference endpoint and testing the inference endpoint. NOTE: make sure using the EC2(such as c5.4xlarge, m5.2xlarge or r5.xlarge), SageMaker notebook or local env with 32G+ memory and 100G+ free disk space.

Requirements of Python packages for local env,

  • DGL == 0.6.*
  • SageMaker >= 2.40.0 < 3.0.0
  • awscli >= 1.18.140
  • PyTorch >= 1.6.0 < 1.7.0
  • Python >= 3.6
  • pandas
  • sklearn
  • matplotlib