python --version
conda list
conda upgrade conda
conda upgrade --all
conda install numpy
Or an specific version
conda install numpy=1.10
conda remove numpy
Make use of wildcards
conda search *beautifulsoup*
conda install jupyter notebook
jupyter notebook
This is helpful to manage environments from Jupyter Notebook
conda install nb_conda
Use it to set up matplotlib from your notebook. For example, you can use Inline backend, and render images for retina resolution:
%matplotlib inline
config InlineBackend.figure_format = 'retina'
Use it for debugging. Type q
on the prompt to leave the debugger.
Use it for timing instructions in a cell.
You can convert notebooks to multiple formats with nbconvert
:
jupyter nbconvert --to html notebook.ipynb
You can convert them to slides and serve them:
jupyter nbconvert notebook.ipynb --to slides --post serve
numpy.loadtxt('data.csv', delimiter = ',')
pandas.read_csv('data.csv')
Assigning specific columns to variables
X = data.iloc[:,:-1]
y = data.iloc[:,-1]
Remove column from dataframe
data.drop('Header', axis = 1)
Combining pandas
and numpy
data = numpy.asarray(pandas.read_csv('data.csv', header=None))
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
model.predict(X_test)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
poly_feat = PolynomialFeatures(degree = 4)
X_poly = poly_feat.fit_transform(X)
poly_model = LinearRegression(fit_intercept = False).fit(X_poly, y)
model.predict(X_test)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
poly_model = make_pipeline(PolynomialFeatures(degree=4), LinearRegression())
poly_model.fit(X, y)
model.predict(X_test)
from sklearn.linear_model import Lasso
lasso_reg = Lasso()
lasso_reg.fit(X,y)
reg_coef = lasso_reg.coef_
For L2 linearization, Ridge
can be used
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
lasso_reg = Lasso()
lasso_reg.fit(X_scaled, y)
reg_coef = lasso_reg.coef_